
Byzantine Finality Gadgets

April 17, 2019

1 Introduction

We consider the question of finality for blockchain protocols: when will a block be reverted. Many such
protocols, such as the original blockchain, Bitcoin, have the property of eventual consensus - that an ever
growing prefix of the chain will be agreed upon by all participants forever onward. But they generally
only give probabilistic finality on a specific block - that under some assumptions about the network and
participants, if we see a few blocks building on a given block, we can estimate the probability that it is final.

But what we’d prefer is to have provable finality - for example a signed statement by a set of authorities,
the set of whom can be tracked, that the block is final. This is useful to prove what happened to light
clients, who do not have the full chain or are not actively listening to the network, and to communicate with
other chains, possibly as part of a scalability solution, where not anyone receives or stores all the data in the
system.

Another popular family of consensus mechanisms for blockchains involves getting Byzantine agreement
on each block [?]. This gives provable finality immediately. However this is slow if we have a large set of
participants in the Byzantine agreement.

The approach that we will take is similar to the approach that Ethereum plans to take with Casper the
Friendly Finality Gadget (Casper FFG)[2], which combines these approaches. We will use a block production
mechanism and chain selection rule that give eventual consensus and then add a finality gadget, a protocol
that finalises blocks that the participants already agree on, to get provable finality.

We present a finality gadget that works in a partially synchronous network model, GRANDPA, as well
as an asynchronous finality gadget, that can cope with 1/5 Byzantine nodes.

Recent research on consensus has come up with many different block production mechanisms that give
eventual consensus. We want formal guarantees to hold for finality gadgets that can easily be applied to
many possible block production mechanisms. Thus we want to make the least assumptions about the block
production mechanism as possible.

An important goal of this work is to formalise the finality gadget problem. We want formal guarantees
for safety and liveness for finality gadget.

1.1 Formalising the problem

We want to formalise the notion of finality gadget, that can be used to modify a protocol that has eventual
consensus with probabilistic finality to one with provavle finality. To achieve this, we need to incorporate
into the definition of Byzantine agreement that we have access to a protocol that would achieve eventual
consensus if we did not affect it. Consider a typical definition of a multi-values Byzantine agreement: We
have a set of participants V , the majority of whom obey the protocol, but a constant fraction may be
Byzantine, meaning they behave arbitrarily, e.g. provide false or inconsistent information or randomly go
offline when they ought to be online.

Definition 1.1. A protocol for multi-valued Byzantine agreement has a set of values S and a set of voters
V , a constant fraction of which may be Byzantine, for which each voter v ∈ V starts with an initial value
sv ∈ S and, in the end, decides a final value fv ∈ S such that the following holds:

1

• Agreement: All honest voters decide the same value for fv

• Termination: All honest voters eventually decide a value

• Validity: If all honest voters have the same initial value, then they all decide that value

We can change this definition to assume that instead of having an initial value, all voters have access to
an external protocol, an oracle for values, that achieves eventual consensus in that it returns the same value
to all voters when called after some time.

Definition 1.2. We say an oracle A in a protocol is eventually consistent if it returns the same value to all
participants after some unspecified time.

Definition 1.3. A protocol for the multi-valued Byzantine finality gadget problem has a set of values S, a
set of voters V , a constant fraction of which may be Byzantine, for which each voter v ∈ V has access to an
eventually consistent oracle A and, in the end, each voter decides a final value fv ∈ S such that the following
holds:

• Agreement: All honest voters decide the same value for fv

• Termination: All honest voters eventually decide a value

• Validity: All honest voters decide a value that A returned to some honest voter sometime.

For the binary case, i.e. when |S| = 2, the Byzantine finality gadget problem is reducible to Byzantine
agreement. This does not hold for |S| > 2, because the definition of validity is stronger. Note that it is
impossible for multi-valued Byzantine agreement to make the validity condition require that we decide an
initial value of some honest voter and tolerate more than a 1/|S| fraction of faults, since we may have a
1/|S| fraction of voters reporting each inital value and Byzantine voters can act honestly enough not to be
detectable. For finality gadgets, this stronger validity condition is possible and we will want even stronger
versions that quantify when an honest voter had the value.

We show in 7.1 that an asynchronous, deterministic binary finality gadget is impossible, even with one
fault. This does not immediately follow from the celebrated impossibility result of [3] because we do not
know a reduction in the necessary direction, from agreement to the finality gadget problem. The extra
information voters have here, that A will evntually agree for all voters, is not enough to make this possible.

Now how do we extend this to agreeing on a chain of blocks? One difficulty in formalising the problem
is that the block production mechanism cannot be entirely separate from the finality gadget. In order to
finalise new blocks, we must first build on the chain we have already finalised. So at a minimum, the block
production mechanism needs to recognise which blocks the finality gadget has finalised. We will also allow
the block production mechanism to interact with the state of the finality gadget in other ways.

We want the finality gadget to work with the most general block production mechanisms as possible.
Thus we need a condition that combines the property of eventual consensus and this requirement to build
on the last finalised block, but is otherwise not too restrictive. We assume a kind of conditional eventual
consensus. If we keep building on our last finalised block B and don’t finalise any new blocks, then eventually
we have consensus on a longer chain than just B, which the finality gadget can use to finalise another block.
We also want a protocol that does not terminate, but instead keeps on finalising more blocks.

We assume that there is a block production protocol P that runs at the same time as the finality gadget
protocol G. Actors who are participants in both protocols may behave differently in P depending on what
happened in G. However in the reverse direction, the only way that an honest voter v’s behaviour in G is
affected by P is through a voting rule, a function A(v, sv, B) that depends on v and its state sv and takes a
block B and returns a block B′ at the head of a chain including B.

We say that the system G,P and A achieves conditional eventual consensus, if G has finalised a block B,
then eventually, either G will finalise some descendant of B or else all the chains with head Av,sv (B) for all
voters v at all future states sv will contain the same descendant B′ of B.

2

Definition 1.4. Let F be a protocol with a set of voters V , a constant fraction of which may be Byzantine.
We say that F solves blockchain Byzantine finality gadget problem if for every block production protocol P
a voting rule A , then we have the following

• Safety: All honest voters finalise the same block at each block number.

• Liveness: If the system F,G,A achieves conditional eventual consensus, then all honest voters keep
finalising blocks.

• Validity: If an honest voter finalises a block B then that block was seen in the best chain observed by
some honest voter containing some previously finalised ancestor of B,

As a motivating example, we could take F as being using proof of work to build on the longest chain
including the last block G finalised and take A(v, sv, B) as being the longest chain including B that v sees in
state sv. It is well-known [?] that longest chain with proof of work achieves eventual consensus under the
right assumptions and similar arguments show that in this case we have conditional eventual consensus. As
long as we do not change the chain we are building on by finalising another block, then we will eventually
agree on some prefix longer than the last finalised block. Thus any finality gadget that satisfies Definition
1.4, will work in this system so that all honest voters finalise an increasingly long common chain. Thanks
to the abstraction above, we can switch F for one of many possible alternative consensus algorithms and G
will still work.

To analyse the performance of our finality gadget, we will need versions of the last two properties that
appropriately depend on time:

• Fast termination: If the last finalised block has number n and, until another block is finalised, the
best chain observed by all participants will include the same block with block number n+ 1, then a block
with number n + 1 will be finalised within time T .

• Recent validity: If an honest voter finalises a block B then that block was seen in the best chain
observed by some honest voter containing some previously finalised ancestor of B more recently than
time T ago.

Intuitively, fast termination implies that we finalise blocks fast as long as the block production mechanism
achieves consensus fast whereas recent validity bounds the cost of starting to agree on something the block
production mechanism’s consensus later decides is not the best. In this case, we may waste time building
on a chain that is never finalised so it is important to bound how long we do that.

These properties will typically only hold with high probability. In the asynchronous case, we would need
to measure time in rounds of the protocol rather than seconds to make sense of these properties. We are
also interested in being able to remove and punish Byzantine voters, for which we will need:

• Accountable Safety: If blocks on different chains are finalised, then we can identify at least f + 1
Byzantine voters.

1.2 Our results

1.3 Our approach

To discover up with a solution to the blockchain Byzantine finality gadget problem, we will typically look
at various Byzantine agreement protocols and use those to find protocols for the multi-valued Byzantine
finality gadget problem. Agreement protocols with appropriate properties can used to find protocols for the
blockchain Byzantine finality gadget problem by considering running them in parallel at every block number.
If the one block protocol has the right properties then they will agree on blocks consistently, so if we finalise
a block then we also finalise its ancestors and we can come up with a succinct protocol.

For example, suppose we have a one block protocol that calls for a vote on blocks which requires a
participant to observe a supermajority, say votes from 2/3 of voters, for some block, or else the participant

3

observes that the vote is undecided. Now imagine running this vote in parallel for every block number and
have any honest voter vote for blocks from a particular chain. Byzantine voters may vote more than once,
but if we count a vote for a block as a vote for each ancestor of the block in the vote for the instance of the
one block protocol with its number, then Byzantine voters must also vote for chains, though they can vote
for multiple chains. If we do this, then we see that if a block has a supermajority in a vote, then so does all
its ancestors in their votes. Thus the blocks with a supermajority form a chain. Furthermore, if only 1/3 of
voters equivocate then if a participant sees a subset of the votes for chains, then they must see a prefix of
the chain of blocks for which all the votes have supermajorities. Intuitively, the protocol can agree on the
prefix that 2/3 of voters agree on using this.

To ensure safety, each participant maintains an estimate Er of the last block that could have been finalised
in a round r. This has the property that in future rounds it overestimates the block that could have been
finalised so that in round r, the chain with head Er−1 contains all blocks that could have been finalised.
Any honest voter only votes in round r for chains containing their estimate Er−1 and this guarantees that
any block that could have been finalised in round r − 1 will be finalised in round r.

1.4 Related Work

1.4.1 Comparison with Casper

The concept of finality gadget was introduced in Casper the friendly finality gadget and this remains the
finality gadget which is most similar to ours. So it makes sense to compare these. However first, we should
mention the other protocols that are also called Casper.

The first Casper was Casper TFG. Casper CBC[4] gives a recent and clearly specified version of this
protocol. It’s fork choice rule uses the GHOST selection rule on votes. In Casper TFG, votes are blocks,
but they are counted by participants (proposers and validators) like votes, which differs from how GHOST
would be used with proof of work. It also has a flexible way of subjectively finalising blocks based on graphs
of votes.

In Casper FFG[2], validators vote on links between checkpoints, which occur at block numbers that are
multiples of, say, 50. If there are 2/3 votes for one block at consecutive checkpoints, then we can finalise a
chain of blocks up to the first checkpoint.

Epochless Casper,
Casper...
There are two main differences between Casper FFG and GRANDPA. One is that in GRANDPA, different

voters can cast votes simultaneously for blocks at different heights. This is achieved by borrowing the concept
of GHOST on votes from Casper TFG and applying it in a more traditional Byzantine agreement protocol.

The other main difference is how the finality gadget affects the fork-choice rule of the underlying block
production mechanism. In GRANDPA, by default we will assume that this is only affected by having to
include any finalised blocks. Casper FFG [2] does not specify a fork-choice rule, but it requires that we build
on justified blocks for liveness. Later specifications of Casper use the GHOST rule on votes for fork-choice.

Only depending on finalised blocks gives a clearer separation between the block production mechanism
and finality gadget. It may therefore be easier to adapt to other types of protocol that achieve eventual
consensus—and there have been many diverse protocols that do this developed in the last few years. It also
makes it far easier to prove liveness properties. If the finality gadget has not finalised anything and so does
not interfere, then the underlying mechanism should reach eventual consensus, which should be enough for
the finality gadget to finalise whatever we have consensus on.

On the other hand, while building on the longest chain in the absence of a finality gadget to maximize
block rewards may be rational if everyone else does, this is not always the case for building on the longest
chain including the last finalised block. This is because it may be likely that a different chain is going to be
finalised, in which case the rational thing to do might be to build on that. The GHOST on votes fork choice
rule of ? and ? may be more rational. It is not clear that it is, nor is it clear how to prove liveness for such
a rule. Further research may be needed to show that there is a fork choice rule which is rational and leads
to liveness for the finality gadget.

4

2 Preliminaries

Network model: We will mostly be using a partially synchronous gossip network model, such as that
described in [1] section II A. Participants communicate via a gossip network, where they are connected to a
subset of other participants, and forward all messages they receive to all their connected peers. We assume
that the network graph is such that any Byzantine participants are not able to cut off an honest participant
and so any message sent or received by an honest participant reaches all honest participants. The partial
synchrony we will use is the model where messages are received within time T , but possibly only after some
Global Synchronisation Time GST. Concretely, any message sent or received by some honest participant at
time t is received by all honest participants by time GST + T at the latest.

voters: We will want to change the set of participants who actively agree sometimes. To model this, we
have a large set of participants who follow messages. For each voting step, there is a set of n voters. We will
frequently need to assume that for each such step, at most f < n/3 voters are Byzantine. We need n− f of
voters to agree on finality. Whether or not block producers ever vote, they will need to be participants who
track the state of the protocol.

votes: A vote is a block hash, together with some metadata such as round number and the type of vote,
such as prevote or precommit, all signed with a voter’s private key.

Rounds: each participant has their own idea of what the current round number is. Every prevote and
precommit has an associated round number. Honest voters only vote once (for each type of vote) in each
round and don’t vote in earlier rounds after later ones.

Participants need to keep track of which block they see as currently being the latest finalised block and
an estimate of which block could have been finalised in the last round.

For block B, we write chain(B) for the chain whose head is B. The block number, n(B) of a block B is
the length of chain(B).

For blocks B′ and B, we say B is later than B′ if it has a higher block number. We write B > B′ or
that B is descendant of B′ for B, B′ appearing in the same blockchain with B′ later i.e. B′ ∈ chain(B) with
n(B) > n(B′) and B < B′ or B is an ancestor of B′ for B ∈ chain(B′) with n(B′) > n(B). B ≥ B′ and
B ≤ B′ are similar except allowing B = B. We write B ∼ B′ or B and B′ are on the same chain if B < B′,
B = B′ or B > B′; and B � B′ or B and B′ are not on the same chain if there is no such chain.

Blocks are ordered as a tree with the genesis block as root. So any two blocks have a common ancestor
but two blocks not on the same chain do not have a common descendant.

A vote v for a block B by a validator V is a message signed by V containing the blockhash of B and
meta information like the round numbers and the type of vote.

A validator equivocates in a set of votes S if they have more than one vote in S. We call a set S of
votes tolerant if the number of voters who equivocate in S is at most f . We say that S has supermajority
for a block B if the set of voters who either have a vote for blocks ≥ B or equivocate in S has size at least
(n + f + 1)/2. (The reason to count equivocations like this is to retain monotonicity , that if S ⊂ T then
if S has a supermajority for B so does T , while being able to ignore yet more equivocating votes from an
equivocating validator).

The 2/3-GHOST function g(S) takes a set S of votes and returns the block B with highest block number
such that S has a supermajority for B. If there is no such block, then it returns ‘nil‘. (if f 6= b(n − 1)/3c,
then this is a misnomer and we may change the name of the function accordingly.)

Note that, if S is tolerant, then we can compute g(S) by starting at the genesis block and iteratively
looking for a child of our current block with a supermajority, which must be unique if it exists. Thus we
have:

Lemma 2.1. Let T be a tolerant set of votes. Then

1. The above definition uniquely defines g(T)

2. If S ⊆ T has g(S) 6= nil, then g(S) ≤ g(T).

3. If Si ⊆ T for 1 ≤ i ≤ n then all non-nil g(Si) are on a single chain with head g(T).

5

Note that we can easily update g(S) to g(S∪{v}), by checking if any child of g(S) now has a supermajority.
3 tells us that even if participants see different subsets of the votes cast in a given voting round, this rule

may give them different blocks but all such blocks are in the same chain under this assumption.
Next, we define a notion of possibility to have a supermajority which needs t have that if the set of all

votes in a vote T is tolerant and some participant observes a subset S ⊆ T that has a supermajority for a
block B then all partici[ants who see some other subset S′ ⊆ T still see that it is possible for S to have a
supermajority for B. We need a definition that extends to intolerant sets.

We say that it is impossible for a set S to have a supermajority for B if at least (n + f + 1)/2 voters
either vote for a block 6≥ B or equivocate in S. Otherwise it is possible for S to have a supermajority for B.

Note that if S is tolerant, it is possible for S to have a supermajority for B if and only if there is a tolerant
T ⊇ S that has a supermajority for B, which can be constructed by adding a vote from B for all voters
without votes in S and enough voters who already have votes in S to bring the number of equivocations up
to f .

We say that it is impossible for any child of B to have a supermajority in S if S has votes from at least
2f + 1 voters and it is impossible for S to have a supermajority for each child of B appearing on the chain
of any vote in S. Again, provided S is tolerant, this holds if and only if for any possible child of B, there is
no tolerant T ⊆ S that has a supermajority for that child.

Note that it is possible for an intolerant S to both have a supermajority for S and for it to be impossible
to have such a supermajority under these definitions, as we regard such sets as impossible anyway.

Lemma 2.2. (i) If B′ ≥ B and it is impossible for S to have a supermajority for B, then it is impossible
for S to have a supermajority for B′.

(ii) If S ⊆ T and it is impossible for S to have a supermajority for B, then it is impossible for T to have
a supermajority for B.

(iii) If g(S) exists and B � g(S) then it is impossible for S to have a supermajority for B.

3 The GRANDPA protocol

In this section, we give the protocol for GRANDPA, our finality gadget in the partially synchronous setting.
In addition to a set of voters for each of the two votes in a round, we assume that each round has a

participant designated as primary and all participants agree on the voter sets and primary. We will typically
either choose the primary pseudorandomly from or rotate through the voter set.

We let Vr,v and Cr,v be the sets of prevotes and precommits respectively received by v from round r at
the current time.

We define Er,v to be v’s estimate of what might have been finalised in round r, given by the last block
in the chain with head g(Vr,v) for which it is possible for Cr,r to have a supermajority. Next we define a
condition which will allow us to safely conclude that Er,v ≥ B for all B that might be finalised in round r:
If either Er,v < g(Vr,v) or it is impossible for Cr,v to have a supermajority for any children of g(Vr,v), then
we say that v sees that round r is completable. E0,v is the genesis block, assuming we start at r = 1.

In other words, a round r is completable when our estimate chain Er,v contains everything that could
have been finalised in round r, which makes it possible to begin the next round r + 1.

We have a time bound T that we hope suffices to send messages and gossip them to everyone. Inside
a round, the properties both of Er,v having a supermajority, meaning Er,v < g(Vr,v), as well as of it being
imposible to have a supermajority for some given block are monotone, so the property of being completable
is monotone as well. We therefore expect that, if anyone anyone sees a round is completable, then everyone
will see this within time T . Leaving a gap of 2T between steps should then be enough to ensure that we
recieve all honest votes before continuing.

In round r an honest participant v does the following:

6

1. v can start round r > 1 when round r−1 is completable and v has cast votes in all previous rounds
where they are a voter. Let tr,v be the time v starts round r.

2. At time tr,v, if v is the primary of this round and has not finalised Er−1,v then they broadcast
Er−1,v. If they have finalised it, they can broadcast Er−1,v anyway (but do not need to).

3. If v is a voter for the prevote of round r, v waits until either it is at least time tr,v + 2T or round r
is completable, then broadcasts a prevote. They prevote for the head of the best chain containing
Er−1,v unless we received a block B from the primary and g(Vr−1,v) ≥ B > Er−1,v, in which case
they use the best chain containing B instead.

4. If v is a voter for the precommit step in round r, then they wait until g(Vr,v) ≥ Er−1,v and one of
the following conditions holds

(i) it is at least time tr,v + 4T ,

(ii) round r is completable or

(iii) it is impossible for Vr,v to have a supermajority for any child of g(Vr,v),

and then broadcasts a precommit for g(Vr,v) ((iii) is optional, we can get away with just (i) and
(ii)).

Nite that Cr,v and Vr,v may change with time and also that Er−1,v, which is a function of Vr−1,v and
Cr−1,v, can also change with time if v sees more votes from the previous round.

3.1 Finalisation

If, for some round r, at any point after the precommit step of round r, we have that B = g(Cr,v) is later
than our last finalised block and Vr,v has a supermajority, then we finalise B. We may also send a commit
message for B that consists of B and a set of precommits for blocks ≥ B (ideally for B itself if possible see
”Alternatives to the last blockhash” below).

To avoid spam, we only send commit messages for B if we have not receive any valid commit messages
for B and its descendants and we wait some time chosen uniformly at random from [0, 1] seconds or so before
broadcasting.

If we receive a valid commit message for B for round r, then it contains enough precommits to finalise B
itself if we haven’t already done so, so we’ll finalise B as long as we are past the precommit step of round r.

4 Analysis

4.1 Accountable Safety

The first thing we want to show is asynchronous safety, assuming we have at most f Byzantine voters. This
follows from the property that if v sees round r as completable then any block B with Er,v 6≤ B has that
it is impossible for one of Cr,v or Vr,v to have a supermajority for B and so B was not finalised in round
r. This ensures that all honest prevotes and precommits in round r + 1 are for chains that include any
blocks that could have been finalised in round r. With an induction, this is what ensures that we cannot
finalise blocks on different chains. To show accountable safety, we need to turn this proof around to show
the contrapositive, when we finalise different blocks , then there are f + 1 Byzantine voters. If we make this
proof constructive, then it gives us a challenge procedure, that can assign blame to such voters.

Theorem 4.1. If the protocol finalises any two blocks B,B′ for which valid commit messages were sent,
but which do not lie on the same chain, then there are at least f + 1 Byzantine voters who all voted in a

7

particular vote. Furthermore, there is a synchronous procedure to find some such set X of f + 1 Byzantine
voters.

The challenge procedure works as follows: If B and B′ are committed in the same round, then the union
of their precommits must contain at least f equivocations, so we are done. Otherwise, we may assume by
symmetry that B was committed in round r and B′ in round r′ > r. There are at least n − f voters who
precommitted ≥ B′ or equivocated in round r in their commit messages, so we ask those who precommitted
≥ B′ why they did so.

Starting with r′′ =′, we ask queries of the following form:

• Why was Er′′−1 6≥ B when you prevoted for or precommitted to B′′ 6≥ B in round r′′ > r?

Any honest voter should be able to respond to this, as is shown in Lemma 4.2 below.
The response is of the following form:

• A either a set S of prevotes for round r′′ − 1, or else a set S of precommits for round r′′ − 1, in either
case such that it is impossible for S to have a supermajority for B.

Any honest voter should respond. In particular, if no voter responds, then we consider all voters how
should have responded but didn’t as Byzantine and we return this set of voters, along with any equivocators,
which will be at least n− f voters total. If any do respond, then if r′′ > r + 1, we can ask the same query
for at least n − f validators in round r′′ − 1. We note however that if any voters do respond then we will
not punish non-responders.

If we ask such queries for a vote in all rounds between r′′ = r′ and r′′ = r + 1 and get valid responses,
since some voter responds when r′′ = r + 1, then we have either a set S of prevotes or precommits in round
r that show it is impossible for S to have a supermajority for B in round r.

If S is a set of precommits, then if we take the union of S and the set of precommits in the commit
message for B, then the resulting set of precommits for round r has a supermajority for B and it is impossible
for it to have a supermajority for B. This is possible if the set is not tolerant and so there must be at least
f + 1 voters who equivocate an so are Byzantine.

If we get a set S of prevotes for round r that does not have a supermajority for B, then we need to ask
a query of the form

• Which prevotes for round r have you seen?

to all the voters of precommit in the commit message for B who voted for blocks B′′ ≥ B. There must be
n− f such voters and a valid response to this query is a set T of prevotes for round r with a supermajority
for B′′ and so a supermajority for B.

If any give a valid response, by a similar argument to the above, S ∪ T will have f + 1 equivocations.
So we either discover f + 1 equivocations in a vote or else n− f > f + 1 voters either equivocate or fail

to validly respond like a honest voter could do to a query.

Lemma 4.2. An honest voter can answer the first type of query.

We first show that, if a prevote or precommit in round r is cast by an honest voter v for a block B′′, then
at the time of the vote we had B′′ ≥ Er−1,v. Prevotes should be for the head of a chain containing either
Er−1,v or some B′′′ > Er−1,v by step 2 or 3. In either case we have B′′ ≥ Er−1,v. Precommits should be for
g(Vr,v) but v waits until g(Vr,v) ≥ Er−1,v, by step 4, before precommitting, so again this holds. It follows
that, if B′′ 6≥ B, then we had Er−1,v 6≥ B.

We next show that if we had Er−1,v 6≥ B at the time of the vote then we can respond to the query validly,
by demonstrating the impossibility of a supermajority for B. If B was not on the same chain with g(Vr−1,v),
then by Lemma 2.2 (iii), it was impossible for Vr−1,v to have a supermajority for B, as desired. If B was
on the same chain as g(Vr−1,v), then it was on the same chain as Er−1,v as well. In this case, we must have
B > Er−1,v since Er−1,v 6≥ B. However, possibly using that round r − 1 is completable, it was impossible
for Cr−1,v to have a supermajority for any child of Er−1,v on the same chain with g(Vv,r) and in particular

8

for the child of Er−1,v on chain(B). By Lemma 2.2 (i), this means Cr−1,v did not have a supermajority for
B, again as desired.

Thus we have that, at the time of the vote, for one of Vr−1,v, Cr−1,v, it was impossible to have a
supermajority for B. The current sets Vr−1,v and Cr−1,v are supersets of those at the time of the vote, and
so by Lemma 2.2 (ii), it is still impossible. Thus v can respond validly.

This is enough to show Theorem 4.1. Note that if v sees a commit message for a block B in round r and
has that Er′,v 6≥ B, for some completable round r′ ≥ r, then they should also be able to start a challenge
procedure that successfully identifies at least f + 1 Byzantine voters in some round. Thus we have that:

Corollary 4.3. If there at most f Byzantine voters in any vote, B was finalised in round r, and an honest
participant v sees that round r′ ≥ r is completable, then Er′,v ≥ B.

4.2 Liveness

We show the protocol is deadlock free and also that it finalises new blocks quickly in a weakly synchronous
model. For this section, we will assume that there are at most f < n/3 Byzantine voters for each vote, and
so that the sets of prevotes and precommits for each round are tolerant.

We define Vr,v,t be the set Vr,v at time t and similarly for Cr,v,t and the block Er,v,t .
We first show that the completability of a round and the estimate for a completable round are monotone

in the votes we see, in the latter case monotonically decreasing:

Lemma 4.4. Let v, v′ be (possibly identical) honest participants, t, t′ be times, and r be a round. Then if
Vr,v,t ⊆ Vr,v′,t′ and Cr,v,t ⊆ Cr,v′,t′and v sees that r is completable at time t, then Er,v′,t′ ≤ Er,v,t and v′

sees that r is completable at time t′.

Proof. Since v sees that r is completable at time t, either Er,v < g(Vr,v) requiring (n + f + 1)/2 > 2f + 1
votes, or else it is impossible for Cr,v to have a supermajority for any children of g(Vr,v), requiring 2f + 1
votes. In either case, both Vr,v,t and Cr,v,t contain votes from 2f + 1 voters and so the same holds for Vr,v′,t′

and Cr,v′,t′ . By Lemma 2.1 (ii), g(Vr,v′,t′) ≥ g(Vr,v,t). As it is impossible for Cr,v,t to have a supermajority
for any children of g(Vr,v,t), it follows from Lemma 2.2 (i & ii) that it is impossible for Cr,v′,t′ as well, and so
both Er,v′,t′ ≤ g(Vr,v,t) and v′ sees r is completable at time t′. But now Er,v,t and Er,v′,t′ are the last blocks
on chain(g(Vr,v,t)) for which it is possible for Cr,v,t and Cr,v′,t′ respectively to have a supermajority, As it is
possible for Cr,v′,t′ to have a supermajority for Er,v′,t′ , then it is possible for Cr,v,t to have a supermajority
for Er,v′,t′ as well, by Lemma 2.2 (ii) and tolerance assumptions, so Er,v′,t′ ≤ Er,v,t.

4.2.1 Deadlock Freeness

Now we can show deadlock freeness for the asynchronous gossip network model, when a message that is sent
or received by any honest participant is eventually received by all honest participants.

Proposition 4.5. Suppose that we are in the asynchronous gossip network model and that at most f voters
for any vote are Byzantine. Then the protocol is deadlock free.

Proof. We need to show that if all honest participants reach some vote, then all of them eventually reach
the next.

If all honest voters reach a vote, then they will vote and all honest participants see their votes. We need
to deal with the two conditions that might block the algorithm even then. To reach the prevote of round r, a
participant may be held up at the condition that round r−1 must be completable. To reach the precommit,
a voter may be held up by the condition that g(Vr,v) ≥ Er−1,v.

For the first case, the prevote, let S be the set of all prevotes from round r− 1 that any honest voter saw
before they precommitted in round r − 1. By Lemma 2.1, when voter v′ precommitted, they do it for block
g(Vr−1,v′) ≤ g(S). Let T be the set of precommits in round r cast by honest voters. Then for any block
B 6≤ g(S), T does not contain any votes that are ≥ B and so it is impossible for T to have a supermajority
for B. In particular, it is impossible for T to have a supermajority for any child of g(S).

9

Now consider a voter v. By our network assumption, there is a time t by which they have seen the votes
in S and T . Consider any t′ ≥ t. At this point we have g(Vr,v,t;) ≥ g(S). It is impossible for Cr,v,t′ to have
a supermajority for any child of g(S) and so Er−1,v,t′ ≤ g(S), whether or not this inequality is strict, we
satisfy one of the two conditions for v to see that round r − 1 is completable at time t′. Thus if all honest
voters reach the precommit vote of round r − 1, all honest voters reach the prevote of round r.

Now we consider the second case, reaching the precommit. Note that any honest prevoter in round r
votes for a block Bv ≥ Er−1,v,tv where tv is the time they vote. Now consider any honest voter for the
precommit v′. By some time t′, they have received all the messages received by each honest voter v at time
tv and v′’s prevote. Then by Corollary 4.3, Bv ≥ Er−1,v,tv ≥ Er−1,v′,t′ . Since Vr,v′,t′ contains these Bv,
g(Vr,v′,t′) ≥ Er−1,v′,t′ . Thus if all honest voters prevote in round r, eventually all honest voters precommit
in round r.

An easy induction completes the proof of the proposition.

4.2.2 Weakly synchronous liveness

Now we consider the weakly synchronous gossip network model. The idea that there is some global stabili-
sation time(GST) such that any message received or sent by an honest participant at time t is received by
all honest participants at time max{t,GST}+ T .

Let tr be the first time any honest participant enters round r i.e. the minimum over honest participants
v of tr,v.

Lemma 4.6. Assume the weakly synchronous gossip network model and that each vote has at most f
Byzantine voters. Then if tr ≥ GST, we have that

(i) tr ≤ tr,v ≤ tr + T for any honest participant v,

(ii) no honest voter prevotes before time tr + 2T ,

(iii) any honest voter v precommits at the latest at time tr,v + 4T ,

(iv) for any honest v, tr+1,v ≤ tr + 6T .

Proof. Let v′ be one of the first honest participants to enter round r i.e. with tr,v′ = tr. By our network
assumption, all messages received by v′ before they ended are received by all honest participants before
time tr + T . In particular at time tr, v′ sees that all previous rounds are completable and so by Corollary
4.3, so does every other honest participant by time tr + T . Also since for r′ < r, at some time sr′ ≤ tr
g(Vr′,v′,s′r

) ≥ Er′,v′,s′r
, again by Lemma 4, for all honest v, g(Vr′,v,tr+T) ≥ Er′,v,tr+T . Looking at the

conditions for voting, this means that any honest voter does not need to wait before voting in any round
r′ ≤ r. Thus they cast any remaining votes and enter round r by time tr + T . This shows (i).

For (ii), note that the only reason why an honest voter would not wait until time tr,v + 2T ≥ tr + 2T is
when n− f voters have already prevoted. But since some of those n− f votes are honest, this is impossible
before tr + 2T

Now an honest voter v′′ prevotes at time tr,v′′ + 2T ≤ tr + 3T and by our network assumptions all
honest participants receive this vote by time tr + 4T . An honest voter for the precommit v has also received
all messages that v′′ received before they prevoted by then. Thus the block they prevoted has Bv′′ ≥
Er−1,v′′ ≥ Er−1,v,tr+4T , since this holds for every honest voter v′′, g(Vr,v,tr+4T) ≥ Er−1,v,tr+4T . Thus they
will precommit by time tr,v + 4T which shows (iii).

By the network assumption an honest voter v′’s precommit will be received by all honest participants
v by time tr,v′ + 5T ≤ tr + 6T . Since v will also have received all prevotes v say when they precommitted
by this time, their vote Bv′ will have Bv′ = g(Vr,v′) ≤ g(Vr,v,tr+6T). Thus Cr,v,tr+6T contains precommits
from n−f voters v′ with Bv′ ≤ g(Vr,v,tr+6T) and thus it is impossible for Cr,v,tr+6T to have a supermajority
for any children of g(Vr,v,tr+6T). Thus v sees that round r is completable at time tr + 6T . Since they have
already prevoted and precommitted if they were a voter, they will move to round r + 1 by at latest tt + 6T .
This is (iv).

10

Lemma 4.7. Suppose tr ≥ GST and very vote has at most f Byzantine voters. Let Hr be the set of prevotes
ever cast by honest voters in round r. Then

(a) any honest voter precommits to a block ≥ g(Hr),

(b) every honest participant finalises g(Hr) by time tr + 6T .

Proof. For (a), we separate into cases based on which of the conditions (i)-(iii) that we wait for to precommit
hold.

For (i), all honest voters prevote in round r by time tr + 3T . So any honest voter v who precommits at
or after time tr,v + 4T ≥ tr + 4T has received all votes in Hr and by Lemma 2.1, precommits to a block
≥ g(Hr).

For (ii), we argue that no honest voter commits a block 6≥ g(Hr) first. The result will then follow by an
easy induction once the other cases are dealt with. Suppose that no honest voter has precommitted a block
6≥ g(Hr) so far and that a voter v votes early because of (ii).

Note that, since we assume that all precommits by honest voters so far were ≥ g(Hr), it is possible for
Cr,v to have a supermajority for g(Hr). For (ii) to hold for a voter v i.e for round r to be completable, it
must be the case that either it is impossible for Cr,v to have a supermajority for g(Vr,v) or else be impossible
for Cr,v to have a supermajority for any children of g(Vr,v). By Lemma 2.2 cannot have g(Vr,v) < g(Hr).
But by Lemma 2.1, these are on the same chain and so g(Vr,v) ≥ g(Hr). Since this is the block v precommits
to, we are done in case (ii)

For (iii), let v be the voter in question. Note that since n−f honest voters prevoted ≥ g(Hr), it is possible
for Vr,v to have a supermajority for g(Hr). By Lemma 2.1, g(Vr,v) is on the same chain as g(Hr). For (iii),
it is impossible for Vr,v to have a supermajority for any children of g(Vr,v). If we had g(Vr,v) < g(Hr), by
Lemma 2.2, this would mean that it would be impossible for Vr,v to have a supermajority for g(Hr) as well.
So it must be that g(Vr,v) ≥ g(Hr) as required.

For (b), combining (a) and Lemma 4.6 (iii), we have that any honest voter v precommits ≥ g(Hr) by
time tr,v + 4T . By our network assumption, all honest participants receive these precommits by time tr + 6T
and so finalise g(Hr) if they have not done so already.

Lemma 4.8. Suppose that tr ≥ GST, the primary v of round r is honest and no vote has more than f
Byzantine voters. Let B = Er−1,v,tv,r be the block v broadcasts if it is not final. Then every honest prevoter
prevotes for the best chain including B and all honest voter finalise B by time tr + 6T .

Proof. By Lemma 4.6 and our network assumptions, no honest voter prevotes before time tr +2T ≥ tr,v +2T
and so at this time, they will have seen all prevotes and precommits seen by v at tr,v and the block B if v
broadcast it then. By Lemma 4.4, any honest voter v′ has Er−1,v′ ≤ B ≤ g(Vr−1,v then.

So if the primary broadcast B, then v′ prevotes for the best chain including B. If the primary did not
broadcast B, then they finalise it. By Corollary 4.3, it must be that Er−1,v′ ≥ B and so Er−1,v′ = B and so
in this case v′ also prevotes for the best chain including B.

Since all honest voters prevote ≥ B, g(Hr) ≥ B and so by Lemma 4.7, all honest participants finalise B
by time tr + 6T

Lemma 4.9. Suppose that tr ≥ GST + T and the primary of round r is honest. Let B be the latest block
that is ever finalised in rounds < r (even if no honest participant finalises it until after tr). If all honest
voters for the prevote in round r agree that the best chain containing B include the same child B′ of B, then
they all finalises some child of B before tr + 6T .

Proof. By Corollary 4.3, any honest participant sees that Er−1 ≥ B during round r. Let v be the primary
of round r and B′′ = Er−1,v,tr,v . If B′′ > B, then by Lemma 4.8, all honest participants finalise B′′ by time
tr + 6T which means they finalised a child of B. If B′′ = B, then by Lemma 4.7, all honest voters prevote
for the best chain including B. By assumption these chains include B′ and so g(Hr) ≥ B. By Lemma 4.7,
this means that B′ is finalised by time tr + 6T .

11

4.2.3 Recent Validity

Lemma 4.10. Suppose that tr ≥ GST, the primary of round r is honest and all votes have at most f
Byzantine voters. Let B be a block that less than f + 1 honest prevoters in round r saw as being in the best
chain of an ancestor of B at the time they prevoted. Then either all honest participants finalise B before
time tr + 6T or no honest participant ever has g(Vr,v) ≥ B or Er,v ≥ B.

Proof. Let v′ be the primary of round r and let B′ = Er−1,v′,tr,v′ . If B′ ≥ B, then by Lemma 4.8, all honest
participants finalise B by time tr + 6T . If B′ 6≥ B, then by Lemma 4.8, at most f honest voters prevotes
≥ B. In this case, less than 2f + 1 ≤ (n + f + 1)/2 prevoters vote ≥ B or equivocate and so no honest
participant ever has g(Vr,v) ≥ B.

Corollary 4.11. For t − 6T > t′ ≥ GST, suppose that an honest participant finalises B at time t but that
no honest voter has seen B as in the best chain containing some ancestor of B in between times t′ and t,
then at least (t− t′)/6T − 1 rounds in a row had Byzantine primaries.

5 Practicalities

5.1 Changing the voter set on-chain in an asynchronously safe way

5.1.1 Changing the voter set in an asynchronously safe way

Suppose we have an on-chain protocol that decides we need a different voter set. Once everyone finalises the
block, they know that we need to change the set. The protocol can cope with changing the voter set from
some round r. The main difficulty is that the chain has no idea what the current round number is and even
if we have a block that instructs us to change the voter set at round r, we might only finalise the block after
round r. So instead we will not take advantage of the ability to change set from one round to the next.

A block B can contain an instruction that we should change to the voter set to some other set after some
integer m ≥ 0 blocks. If our best chain for a prevote contains such a block B, then we do not prevote for
more than m blocks after B, even if our best chain is longer. Thus if the current voter set has n− f honest
voters, they will only finalise m blocks after such a B. We only accept votes and commit messages up top
m blocks after B from the current set of voters.

When some block B′ that is m blocks after B has been finalised, then the new voter set starts again at
round 1 with E0 = B′. Votes will need to contain additional metadata that indicates the voter set somehow.

5.1.2 Unsafe fallback for changing the voter set after stalling

In extreme circumstances, we may need to deal with 1/3 of voters being offline. There is no asynchronously
safe way of doing this. It also breaks the chain of signed statements by the existing set of voters saying
who the future set of voters should be. And it means we may be vulnerable to being cut of by Byzantine
participants. However if we are in a state when many voters go offline but the network is not partitioned,
then we want a way to agree on a set of new voters to restart the finality gadget.

Every 100 blocks or so, we should put a valid commit message on chain. Honest block producers should
put the most recent message on the chain, provided that there is one for a more recent block than 100 blocks
ago. Then if a participant sees that their best chain has not had such a message for 1000 blocks and are not
aware of any more recent blocks being finalised, then they set a new voter set to be one determined by the
900th block since the last commit message on chain.

The protocol for selecting voters should require recent messages on chain signed by those voters so that
this is likely to give a set of voters very few of whom are offline.

We should consider having to manually approve finality agreed upon by this new set to alleviate the
security concerns above. But this still gives a way to canonically agree on a new set, in the event of WW3
or bad initialisation of a new chain.

12

If we do not want to put commit messages on chain, then we can alternatively do the following. Every
block producer puts the highest block number that they see as finalised in their block.

Then any participant sees that if there is an n such that

(i) their best chain is at least length n + 100

(ii) the indicators the last finalised block height of blocks n− 100 to n in their best chain have median at
most n− 1050 and

(iii) n is the minimum that satisifies (i) and (ii)

then they switch to the best validator set given by block n. If the same block at height n is on everyone’s best
chain, which can be shown to occur with high probability given (i) for many block production mechanisms,
then everyone will eventually agree that we should switch to the validator set given by that block. If any
100 consectutive blocks of the best chain are produced by honest and synchronised block producers then this
will only happen if GRANDPA fails to finalise any block in the time it took to produce 1000 blocks.

5.2 Alternatives to the last block hash

The danger with voting for the last blockhash in the best chain is that maybe no one else will have seen
and processed the next block. It would also be nice to make the most of BLS multisig/aggregation, which
allows a single signature for many messages/signers than can be checked in time proportional to the number
of different messages signed.

To get round the first alone, it might be better to vote for a block 3/4 along (rounding further) the
unfinalised chain , rather than for th head.

But the second suggests that maybe we should be including signatures for several of the latest blocks in
a chain. We could include that last 2 or 3. We could also do e.g. the the blocks with block numbers with the
last 2 multiples of each power of two since th last finalised block, which gives log unfinalised chain length
messages but should have many blocks in common.

When presented with a vote that includes many blocks, we should interpret them as being for th last
block we’ve seen if any. Then we need to be able to update that vote to a later block when that is seen.
This retains monotonicity of a supermajority for/ it is impossible to have a supermajority for over time.

It does not matter if some of the votes are for a block that does not exist as everyone will ignore that
part of the vote. But including votes for block that are seen but are not on a chain is an equivocation and
is slashable. We need to count such votes as votes for the had of every chain in the vote (as someone might
interpret them as for any one of them).

Then if we need to BLS aggregate votes that are ≥ B for a commit message or query response, it is
OK to use any vote that is ≥ B, not necessarily the vote for th head. This should reduce the number of
blockhashs sign, in the optimistic case down to 1.

5.3 Block production rule

If we adopt that rule that block producers should build on the best chain including the last finalised block,
then if we don’t finalise another block this will eventually include some prefix beyond the last finalised block,
and therefore the protocol is live by Lemma 4.10.

But the issue is that if agreement is much slower than block production, then we might have a prevote
for a short chain on the last finalised block, then the best chain does not include that block and we build a
long chain that is eventually never finalised. This could be fixed by building on Er−1 or Er. But if we do
that, and these change very quickly, then we may never come to agreement on the best chain.

So we have two possible chain selection rules for block producers:

1. Build on the best chain including the last finalise block B.

2. Build on best chain including whichever of {Er, Er−1, B} is latest and ≥ B.

13

1 is better if finalisation is happening quickly compared to block production and 2 is best if block
production is much faster. We could also consider hybrid rules like adopt 1 unless we see that the protocol
is stuck or slow, then we switch to 2.

6 Why?

6.1 Why do we wait at the end of a round and sometimes before precommitting?

If the network is badly behaved, then these steps may involve waiting an arbitrarily long time. When the
network is well behaved (after the GST in our model), we should not be waiting. Indeed there is little point
not waiting to receive 2/3 of voters’ votes as we cannot finalise anything without them. But if the gossip
network is not perfect, an some messages never arrive, then we may need to implement voters asking other
voters for votes from previous rounds in a similar way to the challenge procedure, to avoid deadlock.

In exchange for this, we get the property that we do not need to pay attention to votes from before the
previous round in order to vote correctly in this one. Without waiting, we could be in a situation where we
might have finalised a block in some round r, but the network becomes unreliable for many rounds and gets
few votes on time, in which case we’ need to remember the votes from round r to finalise the block later.

6.2 Why have a primary?

We only need the primary for liveness. We need some form of coordination to defeat the repeated vote
splitting attack. The idea behind that attack is that if we are in a situation where almost 2/3 of voters vote
for something an the rest vote for another, then the Byzantine voters can control when we see a supermajority
for something. If they can carefully time this, they may be able to split the next vote. Without the primary,
they could do this for prevotes, getting a supermajority for a block B late, then split precommits so we don’t
see that it is impossible for there to be a supermajority for B until late. If B is not the best block given the
last finalised block but B′ with the same block number, they could stop either from being finalised like this
even if the (unknown) fraction of Byzantine players is small.

When the network is well-behaved, an honest primary can defeat this attack by deciding how much we
should agree on. We could also use a common coin for the same thing, where people would prevote for either
the best chain containing Er−1,v or g(Vr−1,v) depending on the common coin. With on-chain voting, it is
possible that we could use probabilistic finality of the block production mechanism - that if we don’t finalise
a block and always build on the best chain containing the last finalised block then not only will the best
chain eventually converge, but if a block is behind the head of the best chain, then with positive probability,
it will eventually be in the best chain everyone sees.

In our setup, having a primary is the simplest option for this.

7 The asynchronous finality gadget problem

Here we give an extension of the [3] result that shows the impossibility of having an asynchronous and
deterministic finality gadget protocol and give an asynchronous protocol that uses a common coin primitive.

7.1 Impossibility of a deterministic protocol

The asynchronous binary fault tolerant agreement problem is as follows:
We have number of voters which each have an initial vi in {0, 1}
We may have one or more faulty nodes, which here means going offline at some point. Nodes have

asynchronous communication - so any message arrives but we have no guarantee when it will. The goal is
to have all non-faulty nodes output the same v, which must be 0 if all inputs vi are 0 and 1 if all are 1.

Fischer, Lynch and Paterson[3] showed that this is impossible if there is one faulty node.

14

The binary fault-tolerant finality gadget problem is similar, except now there is an oracle A that any
node can call at any time with the following properties:

either A always outputs x in {0, 1} to all nodes at all times or else there is an x in {0, 1} and for each
node i, there is a Ti such that when i calls A before Ti. it gives x but if it calls A after Ti, it returns not x .

and we want that if A never switches, then all non-faulty nodes output x. If A does switch then all
non-faulty nodes should output the same thing, but it can be 0 or 1.

Then this is also impossible, even for one faulty node, which just goes offline. Note that this generalises
Byzantine agreement, since if we could each node i could call A once at the start and use the output as vi.
(For the multi-valued case, we will define the problem so that this reduction does not hold.)

Proof sketch. We follow the notation of [3] and assume for a contradiction that we use a correct protocol.
Let r be a run of the protocol where A gives 0 all the time. Then by correctness r decides 0. Now we consider
what can happen when A switches to 1 after each configuration in r. If it switches to 1 at the start, then
the protocol decides 1. If we switch to 1 when all node have already decided 0, then we decide 0.

We claim that some configuration in the run r, where there are two runs from it where A is always 1
that decide 0 and 1. We call such states 1-bivalent. To see this, assume for a contradiction that r contains
no such configurations. Then there is are successive configurations C,C ′ such that if A return 1 in the
future from C then we always decide 0 but from C ′, we always decide 1. Let events be (p,m, x) where node
(processor/validator) p receives message m (which my be null) and executes some code where any calls to
A return x in {0, 1}, then sends some messages. Then there is some event (p,m, 0) that when applied to C
gives C ′. Now suppose that p goes offline at C, then if A always returns 1 afterwards, then we still decide 1.
Thus there is a run r′ that starts at C where p tales no steps, A always returns 1 and all other nodes still
output 1. But since p takes no steps in r′, we can apply r′ after (p,m, 0) and so we have that C ′ has a run
where A always returns 1 but decides 1, which is a contradiction.

Now let C be a 1-bivalent configuration. We can follow the FLP proof to show that there is a run from
C for which A always returns 1, all messages are delivered but all configurations are 1-bivalent and so the
protocol never decides. This completes the proof by contradiction that there is no correct protocol.

7.2 1/5 BFT finality gadget using a common coin

In this section, we will assume the asynchronous gossip network model. By the previous impossibility result,
we will need to use randomness to get a finality gadget in this model. We assume that we have access to a
common coin protocol.

For every vote, We have n voters , at most f of which are Byzantine and n = 5f + 1. For a voter v, Let
Vr,v, Cr,v be the set of prevotes and precommits from round r that v has seen.

1. Everyone prevotes for the best chain including the block they were locked to last round.

2. Wait until Vv,r contains prevotes from n− f voters.

3. Precommit g3/5(Vr,v)

4. Call a precommit for B justified if B ≤ g3/5(Vr,v) and if B < g3/5(Vr,v) then the child B′ of B on the
chain of g3/5(Vr,v) has that there are votes from f + 1 voters in Vr,v that are not ≥ B′. Wait until Cr,v

has justified precommits from n− f voters.

5. Call the common coin, sr

6. If sr = 1, finalise g4/5(Cr)

7. lock to g(4−3sr)/5(Cr) for next round.

The common coin is a (secure cryptographic implementation of) the following protocol. It does not return
a coin until more than 4f + 1 voters (for the prevote vote in the next round in case of ambiguity) call it. It
returns at the latest shortly after all honest voters call it. When it does, it returns an sr sampled uniformly

15

from {0, 1}, identical for all who called it, and before 4f + 1 called it, no-one has any information about the
result.

Here gt(S) is the t-GHOST function defined as follows. We construct a chain starting with the genesis
block and adding the child of the current block such that most voters have votes ≥ it until there are nt or
less votes for any child of the current block, when we return the current block.

The idea behind the proof of asynchronous liveness is that for a particular block B′, some value of the
common coin, either all the honest voters who received 4/5 of precommits before the common coin was
decided lock to B′ or none do. If we had a fixed threshold for locking, an adversarial choice of the number
of precommits for B′ or its descendants could lead to some voters locking to it and some not (and indeed
there would be runs that do this indefinitely as this is how the impossibility result works for this type of
algorithm.)

Firstly we note that much of the machinery of section 2 carries over to the 1/5 byzantine case.

Lemma 7.1. Let T be a set of votes such that at most f voters have multiple votes in T . Let t ≥ (n+f)/2n
Then

1. The above definition uniquely defines gt(T).

2. If S ⊆ T has gt(S) 6= nil, then gt(S) ≤ gt(T) for t ≥ (n + f)/2n.

3. If Si ⊆ T for 1 ≤ i ≤ n then all non-nil gt(Si) are on a single chain with head g(T).

4. If r ≤ s, then gr(T) ≥ gs(T).

So with n = 5f + 1, g3/5 is sufficient for uniqueness.
First we need to show that the protocol is deadlock free. As long as all honest voters prevote and

precommit, any participant eventually sees prevotes and precomits from n− f voters. We just need to show
that honest prevotes are eventually seen as justified.

Lemma 7.2. Suppose that an honest voter v precommits B in round r. If V ′r,v is the set of prevotes they
saw at the time they precommited and another participant v′ sees all these prevotes i.e. Vr,v′ ⊇ V ′r,v, then v′

sees v’s precommit for B as justified.

Proof. v precommits B = g3/5(V ′r,v). Since Vr,v′ ⊇ V ′r,v, B ≤ g3/5(Vr,v′) by Lemma 7.1 2. So we just need to
show that if B < g3/5(Vr,v′), Vr,v′ contains votes from f + 1 voters that are not ≥ B′ where B′ is the child
of B in the chain of g3/5(Vr,v′). Since B = g3/5(V ′r,v), from the definition of g, B′, like any child of B, does
not have votes from 3f + 1 voters ≥ B′ in V ′r,v. Since V ′r,v contains votes from 4f + 1 voters, there are votes
from at least f + 1 voters that are 6≥ B′ in V ′r,v and so also in Vr,v′ .

Our network assumption and a simple induction shows that we do not deadlock.

Corollary 7.3. All honest voters eventually prevote and precommit in evrey round and all honest participants
reach every round.

Lemma 7.4. If there are enough precommits to finalise a block B in round r, then all honest voters who
prevote in future rounds will be locked to B or its descendants when they do. At the end of the next round
r′ > r with sr′ = 1, all participants will have finalised B.

Proof. For B to be finalised in round r, there need to be votes from more than n − f voters that are ≥ B
and sr = 1. Any honest participant v also sees that sr = 1 and so they lock g1/5(Cr,v). Cr,v contains votes
from at least 4f + 1 voters. At most f voters can have votes 6≥ B in Cr,v if they also voted ≥ B and at most
f voters do not have votes in Cr,v. Thus at least 2f + 1 voters have votes ≥ B in Cr,v. Because g1/5 is not
unique in general, to show that g1/5(Cr,v) ≥ B, we also need to show that no block B′ � B has f + 1 voters
have votes ≥ B′ in Cr,v. If this holds then the procedure to calculate g1/5 will not follow chain that does
not include B and so it will return a block ≥ B. Letting Vr be the set of prevotes ever cast, note that any
honest voter v′ prevotes for a block g3/5(Vr,v′) ≤ g3/5Vr and so as before honest voters precommit to blocks

16

in one chain. Since many honest voters precommit ≥ B, all precommit ∼ B, and so if f + 1 voters have
votes ≥ B′ in B then since at least one of those are honest B′ ∼ B. Thus we have g1/5(Cr,v) ≥ B.

Since all honest voters prevote ≥ B in round r + 1, any participant who waits for votes from 4f + 1
voters will see g3/5(Vr+1) ≥ B and so all honest voters precommit ≥ B in round r + 1. Since only at most f
voters vote 6≥ B, only precommits ≥ B are ever seen as justified by honest participants. Therefore all honest
participants will see g345(Cr+1) ≥ B. If sr = 1, this is enough to finalise B.Since g1/5(Cr+1) ≥ g4/5(Cr+1) ≥
B, whatever the common coin, all honest particupants lock ≥ B. By induction, this holds for all future
rounds.

We want to show that this is asynchronously live:

Proposition 7.5. Suppose that block B is finalised before round r. With probability at least 1/2 over the
common coin in round r, if all voters agree that the best chain including the last finalised block B includes a
decedent B′′, at the prevote step of rounds r + 1 and r + 2, then a descendant of B is finalised the next time
sr = 1 after round r + 2 or earlier.

Proof. By the Lemma 7.4, all honest voters prevote in round r for B or its descendants and so all honest
voters precommit to B or its descendants.

Let Vr be the set of prevotes of all voters. Using Lemma 7.1, all honest voters precommit g3/5(Vr) or its
ancestors. Since some must precommit ≥ B for it to be finalised, g3/5(Vr) ≥ B.

For the case g3/5(Vr) = B, all honest voters precommit B and so any honest participant sees that
B = g1/5(Cr) = g4/5(Cr). Thus all honest participants lock B and so are free to prevote for B′′ or its
descendants in round r + 1. Thus we finalise B′′ in round r + 1 or the next round when sr = 1 after that.

Otherwise, let B′ be the child of B in the chain of g3/5(Vr). We seek to show that we finalise either B′

or B′′.
Let S be the set of honest voters who precommit in round r before 4f + 1 voters call the common coin.

Let S′ be the set of honest voters who call the common coin before it is decided. Since 4f + 1 voters call
the coin before it decided and honest voters who do so saw precommits from 4f + 1 voters, S′ and S each
contain at least 3f + 1 voters.

Let h be the number of voters in S that precommit B′ or its descendants. Note that the other |S| − h
voters just precommit B.

Now consider a particular voter v and the set Cr,v of precommits they received in step 4. the number
of voters with precommits in Cr,v is at least 4f + 1. If v ∈ S′, All the honest voters with precommits in
Cr,v are in S. In this case we have that the number of votes for B′ or its descendants in Cr,v, mv has
h− f ≤ mv < h+ f . For v /∈ S′, since f honest vali8dators can be outside S, we have h− 2f ≤ mv ≤ h+ 2f

Since any descendant of B that is not B′ or its descendants receives less than f precommits for it or
its descendants, we have that either g1/5(Cr,v) = B or g1/5(Cr,v) ≥ B′ and similarly for g4/5(Cr,v). Now
note that if h ≥ 3f + 1, mv ≥ f + 1 and so g1/5(Cr,v) ≥ B′. On the other hand if h < 3f + 1, for v ∈ S′,
mv < 4f + 1 and so g4/5(Cr,v) = B.

If h ≥ 3f +1 and sr = 1, then every honest voter locks a block ≥ B′. Thus is round r+1, they all prevote
≥ B′. By similar reasoning to Lemma 7.4, we finalise B′, the next round r′ > r that we have sr′ = 1.

If h < 3f +1 and sr = 0, then every v ∈ S′ locks only B. But then all such v will prevote their best chain
containing B and so a block ≥ B′′. There are only at most 2f voters who might not do this, the Byantine
voters and the honest voters outside of |S| who prevote ≥ B. Thus any honest voter who has seen prevotes
from n− f voters either sees g3/5(Vr+1,v) = B or g3/5(Vr+1,v) ≥ B′. Since all honest precommits are either
B or ≥ B′′, evry honest voter locks either B or ≥ B′′. Since in round r + 2, all honest voters see that the
best chain including B also includes B′′, this time they all prevote ≥ B′′. By similar reasoning to Lemma
7.4, we finalise B′′, by the next round r′ > r + 1 that we have sr′ = 1.

Crucially note that h depends only on S, which is determined when 4f + 1 voters call the common coin
and before it is flipped. Thus sr is independent of h. If h < 3f + 1 then sr = 0 with probability 1/2 and if
h ≥ 3f + 1 then sr = 1 with probability 1/2. So with probability 1/2, we have either both h < 3f + 1 and

17

sr = 0 or both h ≥ 3f + 1 and sr = 1. Thus with probability at least 1/2, we finalise B′ or B′′ before the
next round after r + 1 when sr = 1.

References

[1] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consensus. arXiv preprint
arXiv:1807.04938, 2018. URL https://arxiv.org/abs/1807.04938.

[2] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437,
2017. URL https://arxiv.org/abs/1710.09437.

[3] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985. URL https://groups.csail.

mit.edu/tds/papers/Lynch/jacm85.pdf.

[4] Vlad Zamfir. Casper the friendly ghost: A “correct-by-construction” blockchain consensus protocol. 2017.
URL https://github.com/ethereum/research/blob/master/papers/CasperTFG/CasperTFG.pdf.

18

https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1710.09437
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://github.com/ethereum/research/blob/master/papers/CasperTFG/CasperTFG.pdf

	Introduction
	Formalising the problem
	Our results
	Our approach
	Related Work
	Comparison with Casper

	Preliminaries
	The GRANDPA protocol
	Finalisation

	 Analysis
	 Accountable Safety
	Liveness
	Deadlock Freeness
	Weakly synchronous liveness
	Recent Validity

	Practicalities
	Changing the voter set on-chain in an asynchronously safe way
	Changing the voter set in an asynchronously safe way
	Unsafe fallback for changing the voter set after stalling

	Alternatives to the last block hash
	 Block production rule

	Why?
	Why do we wait at the end of a round and sometimes before precommitting?
	Why have a primary?

	The asynchronous finality gadget problem
	Impossibility of a deterministic protocol
	1/5 BFT finality gadget using a common coin

