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Abstract. The increasing number of blockchain projects introduced an-
nually has led to a pressing need for secure and efficient interoperability
solutions. Currently, the lack of such solutions forces end-users to rely on
centralized intermediaries, contradicting the core principle of decentral-
ization and trust minimization in blockchain technology. In this paper,
we propose a decentralized and efficient interoperability solution (aka
Bridge Protocol) that operates without additional trust assumptions, re-
lying solely on the Byzantine Fault Tolerance (BFT) of the two chains
being connected. In particular, relayers (actors that exchange messages
between networks) are permissionless and decentralised, hence eliminat-
ing any single point of failure. We introduce Random Sampling, a novel
technique for on-chain light clients to efficiently follow the history of PoS
blockchains by reducing the signature verifications required. Here, the
randomness is drawn on-chain, for example, using Ethereum’s RANDAO.
We analyse the security of the bridge from a crypto- economic perspective
and provide a framework to derive the security parameters. This includes
handling subtle concurrency issues and randomness bias in strawman de-
signs. While the protocol is applicable to various PoS chains, we demon-
strate its feasibility by instantiating a bridge between Polkadot and
Ethereum (currently deployed), and discuss some practical challenges.

Keywords: PoS Blockchains · Trustless Bridges · Light Clients · De-
centralised Relayers · RANDAO Bias · Adaptive Security

1 Introduction

Blockchains are designed as islands, it is easy to verify that a transaction is valid
within the originating blockchain when one is following its history, but challeng-
ing otherwise. While interoperability may be easily resolved with a trusted cen-
tralised intermediaries, it is not a desirable solution. Recent history has shown
just how risky this can be - centralised entities can be compromised or even act
maliciously. According to a Chainalysis report [25], failures in centralised bridges
account for over 60% of all crypto hacks, resulting in losses exceeding $2B USD
to date. In fact, four out of the top five incidents on the rekt leaderboard [8] are
bridge-related hacks. Security of public blockchains hinges on decentralization
and the mantra is to avoid relying on trusted intermediaries.
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Bridges are by far the most attacked components in the blockchain space [4,
3], because secure and efficient bridges are difficult to design and resolving at-
tacks requires cooperation between chains which is nearly impossible. Hence it is
important that the bridge does not have weaker security than either of the source
or target chain. We introduce the notion of crypto-economically sound bridges,
where we carefully trade-off soundness for efficiency. Assuming the honesty as-
sumption used in the consensus of both chains, in expectation an attack on our
bridge would be as expensive as the minimum market cap of the chains. We
present an interactive Commit-Challenge-Response protocol for interoperability
between a source and target PoS blockchain. Our protocol has an on-chain light
client of the source chain deployed on the target chain (e.g., as a smart contract).
Computation on blockchain networks is expensive, particularly in the context of
verifying all signatures from Proof-of-Stake (PoS) validators on the source chain,
and hence not feasible. Our approach improves the efficiency of following the
history of a chain by randomly subsampling the signatures to be checked. Intu-
itively, the protocol works as follows: a set of relayers make a claim that 2/3 of
validators signed a message (e.g., a block’s finality). On-chain light client draws
randomness from the target chain that determines a small subset of signatures
to be check out of those claimed. If the checks pass, we accept that the message
was signed by at least one honest validator. Our solution has three highlights: 1.
Relayers are permissionless and no additional honesty assumptions required for
bridge safety 2. Drastically more efficient in terms of on-chain computation costs
for operating the bridge 3. Scales well against large validator sets on source chain.

We review crypto-economic security of our solution and take into considera-
tion attacks such as griefing attack and safety violation. This includes detecting
subtle concurrency issues in the strawman designs, and fixes which rely on dy-
namically increasing the security parameter only in case of an attack. We then
provide a framework to derive security parameters. Further, we apply the Fiat-
Shamir heuristic to transform our interactive protocol into a non-interactive
digital signature, and explore its impact on efficiency and interplay with crypto-
economic arguments.

Finally, we instantiate our solution for a Polkadot-Ethereum bridge BEEFY,
which has been implemented recently for public use [10]. We discuss practical
challenges like implementing slashing and handling bias in RANDAO beacon.
We perform a thorough security analysis of RANDAO biasability, which may be
of independent interest to any protocol relying on RANDAO.

A prominent interoperability solution comparable to our work is Ethereum’s
Altair Light Client protocol [6] using sync-committees. In Altair, the source
chain subsamples the validators and are fixed for the whole epoch, while our
solutions lets the verifier on target chain sample randomly. This key insight
lets our solution improve over altair along three dimensions: 1. efficiency by a
factor of at least 10; 2. handles adaptive corruption of validators; 3. modular and
parametrizable to the needs of applications. Altair is only feasible for blockchains
with extremely large validator set. Our solution on the other hand is a feasible
and secure for any type of PoS chain.
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2 Preliminaries and System Model

Proof of Stake consensus mechanisms for blockchains require the nodes to
stake the native cryptocurrency for a fixed period. In return, these nodes earn
the opportunity to become validators, receiving rewards for producing blocks
and participating in consensus. The security of the network is derived by the
fact that the stakes of misbehaving nodes can be slashed (forfeited).

Light-clients are blockchain nodes that run in resource-constrained envi-
ronments like browsers or mobile devices to follow a decentralised consensus
protocol. They do not maintain the entire blockchain history but instead vali-
date the most critical pieces of information, such as block headers, to verify the
integrity of the blockchain state. In particular, light clients have direct applica-
tions in building trustless and decentralised bridges between blockchains. Our
definition of a bridge is in the broadest sense and application-agnostic. In this
work, we define bridges as protocols that let two chains communicate and follow
the finality (thru block headers) of each other. Applications like asset-swaps etc
can be built on top of this basic functionality.

2.1 System Model

We formalize our setting, where the objective of an on-chain light client LC on
destination chain D is to follow the finality of a source PoS blockchain S. For
brevity, we model the light client as a smart contract, however, our results hold
for other computation models for updating state on D. Our setting comprises of
three actors: Validators on the source chain S, trustless relayer R, and a light-
client LC deployed on D. We make the some standard assumptions on the PoS
model of S, satisfied by most PoS networks like Cosmos, Ethereum, Polkadot:

1. Consensus: S runs a consensus mechanism with deterministic finality, e.g.,
Byzantine Fault Tolerant algorithms like CasperFFG, GRANDPA, Tender-
mint, PBFT, etc. [22, 42, 18, 24].

2. Payloads: Each block B in S contains a payload PB capturing the state
of S after executing block B. Typically, the payload is the hash of a crypto
accumulator (e.g., Merkle Tree or Merkle Mountain Range Root [43]) where
its leaves are the state of S.

3. Justifications: Oblivious of the underlying consensus mechanism, once a
block B is finalised in S, the payload PB is signed by all honest validators in
the associated validator set VB of size n. We assume at most f validators are
malicious, such that 3f + 1 < n. The validator use an unforgeable signature
scheme σ to attest the payloads. Let σi be the signature of Vi on PB , which
can be verified against its public-key pki. We often identify the validator Vi

by its public-key. A block B is considered justified (or finalised when context
is clear) if its payload PB has been signed by at least 2n/3 + 1 validators
in VB . The set of such valid signatures are called justifications, denoted
JB = {σi|i ∈ [1, .., n]}. We say a justification is valid iff |JB | ≥ 2n/3+ 1 and
σi’s are valid signatures from validators in VB . Assuming the underlying
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consensus mechanism is safe, note that for a particular block-height h, only
a unique block B can have valid justifications.

4. Stakes: Validator Vi has a stake si locked on S. Any malicious behavior by Vi

results in partial or full slash of his stake. We assume the delay in detecting
an offense and enforcing the slash and is bounded by ∆, the slashing delay.

5. Epochs: The blockchain S is divided into consecutive set of blocks called
epochs, denoted E = {E0, · · · , Ei, · · · }. For any i, the validator set VEi remains
unchanged for all blocks within an epoch Ei.

6. Epoch Transitions: A commitment (e.g. Merkle Root) to the next val-
idator set VEi+1

is included in the payload of Ei’s last block. PoS networks
provide this functionality to facilitate light-clients to sync-up efficiently to
the head of the chain by tracking only blocks with validator set changes.

Relayers (denoted R) are entities that collect justifications JB from S and in-
teract with the light-client LC to convince it of the newly finalised blocks. In
the process, they may collect fees for their efforts. Relayers are completely per-
missionless, i.e, they do not deposit any stakes either on S or D nor there is any
registration. Relayers can communicate with D by calling transactions of the
smart contract LC. The only requirement on D is:

1. Randomness: D provides a source of randomness R accessible to LC. Ide-
ally, R is unbiasable by the relayers, and for that matter, even by D’s
validators. We model the source of randomness as a random function R :
BlocksD → N, where R(BD) ∈ N is the randomness generated at block BD.

2.2 Attacker Model

We model the attackers as rational agents, ie., an attack is launched only if the
expected outcome of an attack is positive. Our attacker model allows collusion
between the relayers and validators on S, as well as validators on D. We toler-
ate adversarial faction up to the limit determined by the underlying consensus
mechanism on both S and D, without adding new trust assumption for safety
of the bridge. In particular, relayers are completely permissionless and trustless.
The relayer have no stake attached on either S nor D. The relayer also can ar-
bitrarily initiate and break an interactive session with the light client. This also
means relayer can spawn multiple session concurrently. However, we assume the
existence of at least one honest relayers for liveness of the bridge.

2.3 Problem Statement

We tackle the problem of building trustless bridges using light clients [47]. Typ-
ically, a light client synchronizing block headers of the source chain is imple-
mented as a smart contract on the destination chain. This ensures the destina-
tion chain can verify information about the state of S without relying on external
parties. Moreover, it allows anyone to prove the existence of transactions on S
for smart contracts on D (using Merkle proofs), paving the way for generic ap-
plications. We formally lay out the desired properties of a light client protocol
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between verifier LC and prover R, with an objective to update LC’s view of the
latest finalised block on S. The R (prover) wants to convince the LC (verifier) that
at least one honest validator on S signed the payload PB of a recently finalised
block B. We introduce the notion of crypto-economic soundness for light-client
protocols which lets us trade-off negligible soundness guarantees for efficiency.

Definition 1. ϵ-Soundness Let Π be the protocol between R and LC. Assume
no honest validator in S signed PB. If the R (prover) can convince SC (verifier)
of PB’s authenticity with probability at most ϵ, then Π is defined to be ϵ-sound.
We term ϵ as the soundness error of Π.

Our attacker model does not make any honesty assumptions on relayers. Any
safety violation has to be traced back to the validators signing malicious pay-
loads. Ideally, we want the protocol to be accountable, i.e, malicious validators
on S can be identified and slashed. Our goal is to design a light client protocol
that is crypto-economically sound, as defined below:

Definition 2. Crypto-economic Soundness Let Π be ϵ-Sound. If ϵ is such
that the expected outcome of an adversary attacking Π is negative, then Π is
Crypto-economically Sound.

3 Interactive Random Sampling Protocol

We describe an interactive light-client protocol ΠInt between a relayer R listening
to finalised blocks on S and light-client LC deployed on D. R wishes to convince
LC of a new finalised block B on S which succeeds the latest finalised block
known to LC. Here, by convince, we mean that the light-client is ensured that
at least one honest validator signed B. Once a block B is finalised on S, the
relayers collects the justifications JB and initiates ΠInt. In practice, the relayer
can obtain the justifications by running a full-node of S and listening to it’s
consensus gossip-network. Naively, LC can check the finality of B by verifying f+
1 signatures (where f denotes the malicious nodes on S) in JB , ensuring at least
one honest validator signed B. Combining the above observation with byzantine
assumptions (3f + 1 < n) on S, the light-client is required to verify n/3 + 1
signatures in JB . ΠInt is a Commit-Challenge-Response[29] which reduces the
number of signature verifications (sub-linear w.r.t validator-set size) performed
on the verifier’s side. In particular, ΠInt can be viewed as an instantiation of
Interactive Oracle Proofs (IOP) [16] for the language of digital signatures with
extensions to equip it with accountability. We synonymously use the term Prover
for the relayer R and Verifier for the light-client LC.

3.1 Description

The prover R initiates the protocol claiming to have valid justification JB =
{σi|Vi ∈ VB} for the finality of block B, where σi’s are signatures of Vi on
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payload PB . Instead of sharing the whole justification (super-majority of signa-
tures), the relayer only commits to Claims, a bitfield of length |V | (validator-set
size) which represents the validator signatures claimed to be possessed by R. For
accountability reasons, it also includes σj , a signature of so called backing valida-
tor of the current claim. We assume that the verifier knows the Merkle Root C
of the set of validators (identified by their public keys) for the epoch in which B
is finalised. As outlined in section 2, the epoch transition mechanism on source
chain comprises of a hand-over process, where the Merkle Root of the validator
set responsible for next epoch is included in the state by the last block of the
current epoch. The verifier has access to public randomness R : BlocksD → N
which it can query at a particular block on D. In the challenge phase, it uses R to
query a random subset of the signatures. The prover responds by sending the sig-
natures and openings of the randomly sampled signatures in the response phase.
The verifier maintains two variables in its state: latestSyncedBlockHeight and
latestSyncedPayload, denoting the block-height and payload of the latest know
block finalised on S. If the signatures and opening submitted in the response
phase verifies, the payload (PB) is accepted the state is accordingly updated.

Protocol 1 Interactive Random Sampling

1. Commit: Prover R sends a tuple (PB ,Claims, σj , opj) to the verifier, where
Claims = [b1, · · · , bn] is a bitvector of length n. An honest prover sets bi = 1
iff they possess the signature σi on PB that verifies against pki. σj and opj
are the signature of the backing validator vj and the opening of C to pkj (i.e.
the Merkle co-path).

2. Challenge: Verifier LC checks if Claims has at least n − f indices set to
1s, else it terminates. If the signature opj opens to C and σj is valid, then
the verifier samples m indices i1, . . . im where each ik is chosen uniformly at
random (using R) from the positions of bits in Claims set to 1s.

3. Response: Prover sends signatures σik , the public keys pki1 , . . . , pkim and
openings opik of C to pkik for k ∈ [1,m] to the verifier.

4. Verify: Verifier performs the following checks and terminates if any fails:
(a) the m openings opi1 , . . . , opim against the corresponding public keys

pkj , pki1 , . . . , pkim and C at the randomly chosen indices {i1 . . . ik}.
(b) the m signatures σi1 , . . . , σim against the public keys pkj , pki1 , . . . , pkim

and message PB .
If height(B) > latestSyncedBlockHeight, LC makes the following state
updates:
• latestSyncedBlockHeight := height(B)
• latestSyncedPayload := PB

Else, B is stale and state remains unchanged.

We assume that the signature scheme σ is unforgeable and the commitment
scheme C is binding. We ignore the negligible probability that the prover can
find a signature that verifies against the public key of an honest validator that
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did not sign the message or that they can find an opening of C at position i to a
value other than pki that verifies. To ensure randomness is unpredictable to the
prover at commit phase, verifier uses the randomness R(d) only revealed after
the commit phase as concluded. Equipped with the above assumptions, we now
present the soundness and completeness results for ΠInt.

Theorem 1. (ϵ-Soundness) Consider prover R initiates ΠInt for block B. If
no honest validator in S signed PB, then the verifier SC accepts P with probability
at most 2−m, where m is the security parameter, i.e., the number of signatures
randomly sampled by the verifier.

Theorem 2. (Completeness) ΠInt is complete. If relayer (prover) posses
valid justifications JB of a valid block B, then the light clients (verifier) up-
dates it’s state of the latest synced block to B.

Example 1. Suppose S has 100 validators of which at most 33 are byzantine. A
block gets finalised with at least 67 signatures in its justifications. The relayer
collects these justifications and starts ΠInt to convince the verifier that the block
has been finalised. If the verifier samples m = 34 signatures in the challenge
phase, it can be sure that at least one of these signatures is from an honest
validator. If the verifier only samples m = 10 signatures in challenge phase and
the verify-phase goes thru, then Theorem 1 guarantees that the probability of the
light client accepting a malicious (invalid justifications) block is at most 1/210.

3.2 Crypto-Economic Security

ΠInt guarantees probabilistic ϵ-Soundness with the soundness error 1/2m, solely
dependent on m, the number of signatures sampled in the challenge phase. This
leads to a natural question: how to set the security parameter m? We provide
a crypto-economic framework for deriving the security parameter, striking a
balance between efficiency and security.

Accountability and Slashing Exposure: We specifically require R to in-
clude at least one signature σj (i.e., backing validator Vj ’s signature) from their
Claims in the commit-phase. If the payload is malicious, then the backing val-
idator who signed the malicious payload can be identified and slashed on S. In
absence of backing validator signatures in the commit phase, the provers can ini-
tiate arbitrarily many instances of ΠInt sequentially or concurrently. The relayer
would then have the choice to continue only in instances where the randomness
drawn by the verifier in challenge phase is favorable. The validators have no eco-
nomic disincentive for signing malicious payloads. Consequently, the relayers can
increase the number of attempts (more turns at rolling the dice) in submitting
malicious payloads. Therefore, any attempt by validators at signing malicious
blocks (i.e., a block not finalised on S) needs to be penalised/slashed.

We assume adversaries are rational, implying that an attack is initiated only
if the expected economic value of the attack is positive. Our model considers the
economic value of a successful attack to be the market-cap of S, denoted M . If
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the attack is unsuccessful, we consider the lowest stake s of the validators on S
to be the economic loss for the attackers. Without loss of generality, we assume
the stake of all validators on S are identical. The expectation of the economic
value of an attack is computed as: E(X) = (ϵ · M) − s, where X is random
variable for the economic value of the attack and ϵ is soundness error of ΠInt.
Setting E(X) < 0, we derive m ≥ log2(M/s).

4 Dynamic Random Sampling

ΠInt is prone to a subtle concurrency attack that increases the soundness error
(ϵ) exploiting the following observations:

• Relayers are trustless and permissionless (in-line with our design principle).
Hence, an adversary can spawn arbitrarily many relayers that initiate ΠInt.

• It takes non-negligible time ∆ for slashing a validator (on S) after detecting
its signature on a malicious payload. Moreover, it takes the duration of a full
epoch (|E|) for the light client to discover the change in validator set (i.e.,
malicious validator has been ejected).

Concretely, lets assume an adversary A controls f validators on S, implying A
can obtain n/3 validators signatures on any malicious payload. The adversary
proceeds by initiating c concurrent instances I1, . . . , Ic of ΠInt for a particu-
lar block B (with malicious payload signed by the f malicious validators) with
the same backing signature σ but different claims bitvectors {b1, . . . , bc} in the
Commit phase. Since there is a delay ∆ + |E| before the light-client is aware
of the slashing and validator set change, the adversarial relayer can reuse the
same backing validators signature without increasing slashing exposure of his
instances. The adversary then proceed with the protocol only in those instances
where the random sampling of challenge indices in the Challenge phase is favor-
able, i.e., the challenge indices correspond to malicious validators. Concretely,
the success probability of the attack can now be quantified as c × 2−m, or 1 if
c ≥ 2m. However, the slashing exposure is at most sj , as only σj , the signature
of the malicious backing validator is exposed. Analogous to the expected ob-
tained in Section 3.2, we can compute expected outcome under the above attack
scenarios with c concurrent instance of ΠInt as:

Ec(X) = c · ϵ ·M + (1− c · ϵ) · (−s) (1)

The expected attack value linearly increases with c, the number of concurrent
relay instances spawned. For every ϵ, there exists a c such that Ec(X) > 0. This
is a clear attack on the crypto-economic soundness of ΠInt.

4.1 Counter-measure: Dynamically Increasing Signature Checks

To counter the concurrency issue described above, we propose ΠDyn, an exten-
sion of ΠInt. In ΠDyn, the security parameter (signatures sampled) dynamically
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increases based on the number of relay instance backed by the same backing
validator. The light client (verifier) now keeps a counter ue,v for each backing
validator v in epoch e that increments by 1 whenever there is an initial claim
made by a relayer. For any further relay instances by a relayer (or a set of re-
layer) using the same backing validator v, the number of signatures sampled
during challenge phase is increased by 1+2 ∗ ⌈log2(ue,v)⌉. If c instances of ΠDyn
are initiated concurrently using the same backing validator, the probability of
attack succeeding is summation over all the c instances:

c∑
i=1

1

2m+1+2∗⌈log2i⌉
≤ 1

2m
(2)

This dynamic increase in the number of signature checks ensures that the prob-
ability of successful attack is bounded irrespective of the number of concurrent
ΠDyn initiated, and the advantage gained by using the same backing validator
multiple times is neutralized.

The setup for ΠDyn is very similar to ΠInt except that the verifier (LC)
maintains an additional mapping u : (Epoch, PKVB

) → N, where u(e, v) cap-
tures the number of time a validator has been used for the backing signature in
the commit-phase. Here, the backing validator is identified by its public-key. We
do not keep track of relayers as they are permissionless and any attempt to keep
track is not sybil resistant. Intuitively, the dynamic random sampling described
in Protocol 4.1 ensures the adversary does not increase probability of success-
ful attack without increasing its slashing exposure. Importantly, note that the
security parameter remains unchanged if no concurrency attack is launched.

Theorem 3. Dynamic Random Sampling Mitigates Concurrency At-
tacks Let Πdyn,ϵ denote an instantiation of ΠDyn (Protocol 2) where security
parameter m is set s.t ϵ = 1/2m < s/M. For any PPT adversary A controlling
at most n/3 validator on S, the expected incentive for an attacker A is negative.

4.2 Griefing Attacks are Expensive

Since initiating ΠDyn is permissionless, an adversary can attempt to grief honest
relayers by intentionally inflating the dynamic security parameter. This results
in increased network workload and added costs, however, we show such griefing
attacks are expensive and hence impractical for a rational adversary. Assuming
the mapping u(e, v) on the destination chain is publicly observable, an honest
relayer in the commit phase can always pick a validator with the least usage,
i.e., argminv u(e, v) in the epoch e. Thus, an adversary with objective of grief-
ing honest relayers has to uniformly increase the usage counter (u) across all
possible backing validators for the epoch. Let Cinit be the cost for a relayer to
initiate ΠDyn and Cver be the cost of checking each additional signature in the
verify phase. O(2x−1 · |V |) need to be initiated by the adversary for increasing
the security parameter by only x. Recall that the security parameter grows by
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Protocol 2 Dynamic Random Sampling ΠDyn

1. Commit: Identical to ΠInt, the prover R sends a tuple (PB ,Claims, σj , opj) to the
verifier, where Claims = [b1, · · · , bn] is a bitvector of length n. An honest prover
sets bi = 1 iff they possess the signature σi on PB that verifies against pki. σj and
opj are the signature of the backing validator vj and the opening of C to pkj (i.e.
the Merkle co-path).

2. Challenge: Verifier increments u(e, pkj) := u(e, pkj) + 1 corresponding to the
current epoch e and validator with public-key pkj . Verifier checks if Claims has
at least n− f indices set to 1s, else it terminates. If the signature opj opens to C
and σj is valid, then the verifier samples m′ = m+1+2 ∗ u(e, v) indices i1, . . . im′

where each ik is chosen uniformly at random (using random function R) from
the positions of bits in Claims set to 1s. Here m is a statically chosen security
parameter.

3. Response: Identical to ΠInt, the prover sends signatures, public keys and openings
for the m′ random indices requested in challenge-phase.

4. Verify: Identical to ΠInt, the verifier checks the signatures and validates the open-
ings for the response. If all checks pass, the state is updated:
• latestSyncedBlockHeight := height(B)
• latestSyncedPayload := PB

• delete entries in u for all epochs preceding B’s epoch
Else, B is stale and verifier’s state remains unchanged.

2⌈log2u(e, v)⌉. We compute the griefing factor GF [21] (ratio of additional costs
on victims to cost incurred by the attacker) for the above optimal strategy.

GF (x) =
x · Cver

2x−1 · Cinit · 2
3 |V |

(3)

Therefore, the griefing factor asymptotically drops exponentially for as the attack
prolongs. In most practical scenarios, Cver ≈ Cinit if not Cver ≪ Cinit, resulting
in low griefing factor for even small values of x. Moreover, the griefing attacks do
not extend beyond the epoch in which they are launched, as the usage counter
u is reset every epoch.

5 BEEFY: Polkadot-Ethereum Bridge

The protocol ΠDyn has been instantiated to implement a trustless and decen-
tralised bridge BEEFY from Polkadot to Ethereum and is currently live. We
outline the key design decisions and security considerations.

5.1 Light-weight Finality Layer on Polkadot

The Polkadot relay chain [20] uses GRANDPA [42], a deterministic finality gad-
get, for finalising blocks. GRANDPA is designed for secure and fast finalisa-
tion for te network, but is not suitable for light clients. In particular, finality
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justifications for GRANDPA are large (votes on forks not blocks) and light
clients are required to maintain forks to follow finality. We design BEEFY [5]
as an additional light-weight finality layer on GRANDPA such that a. BEEFY
justifications satisfy the properties in Section 2.1 b. BEEFY uses the ECDSA
(secp256k1[46]) signature scheme efficiently verifiable on-chain on Ethereum. In
our current design, BEEFY finality lags GRANDPA finality by a few seconds,
while the validator sets remain the same. Note that it is not necessary for every
Grandpa finalised block to be BEEFY finalised. The payload is root of an MMR
capturing the state of Polkadot, allowing more efficient append operations as the
chain and state grow [43]. MMRs also allow more efficient block inclusion and
ancestry checks on the verifier side [19].

5.2 Slashing for BEEFY misbehaviours

Slashing on-chain for BEEFY participants signing is crucial for security guaran-
tees of ΠDyn. To this end, we store recent payloads on-chain, however, a slash
reporter can always generate an MMR ancestry proof[43] to show that a block
(not stored on-chain) was the prefix of a recent block. The slashing conditions are
straight-forward: validators in BEEFY are slashed for signing a block that is not
in the current chain (GRANDPA finalised). This includes blocks with height less
than or equal to the head of the current chain but are not in the chain, and blocks
with a higher block number. As long as GRANDPA is safe, validators can only
be slashed for voting for blocks they do not see as finalised by GRANDPA, which
honest validators will never do. In theory the full-stake can be slashed but the val-
idator can go rogue until the slash is enforced. Hence, we settle on slashing only
half the stake, keeping room for slashing misbehaviours in other subsystems.

5.3 RANDAO Biasability Analysis

We instantiate the random function R (used in the challenge-phase) in ΠDyn by
the RANDAO beacon on Ethereum. While we assumed R is uniformly random
and unpredictable, it is well-known in literature that RANDAO is biasable [31,
13]. We focus on quantifying the bias for our specific objective: an attacker
that wants to bias an interactive protocol (e.g., ΠDyn) that uses RANDAO. We
analyse the bias and how it affects our security parameter. The analysis in this
section is backed by numerical computations in [14].

In this section, we consider public-coin protocols with Commit-Challenge-
Response phases and abstract away from ΠDyn. In a public coin protocol, the
verifier challenge is chosen uniformly at random from some challenge set Sc,
however if the verifier is implemented on a blockchain, adversarial participants
can introduce bias in the randomness. We quantify this bias as follows:

Definition 3. A verifier V of a public-coin protocol is µ-biasable if for any
adversary, for any challenge c ∈ Sc, Pr[V produces c] ≤ µ/|Sc|.

Implementing Verifier on Ethereum ΠEth
Int : The prover sends a transaction

including the commit message to a smart contract which stores the message
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and the block number ninit in which the transaction is included. The verifier’s
challenge is defined as the RANDAO randomness from some block with number
nchallenge in the range ninit + bdelay ≤ nchallenge ≤ ninit + bdelay + bwindow for some
parameters bdelay, bwindow. A smart contract call made by the prover included
in block nchallenge + 1 records this challenge. Then the prover can send a final
transaction including the response to the smart contract, which verifies accord-
ing to the interactive protocol. We note that smart contracts on Ethereum have
access to the RANDAO randomness from the previous block as well as the block
number, but unfortunately have no access to the slot number of the block [30].

Assumptions: We assume that at least 2/3rd validators are honest, and the
adversary cannot forge signatures or predict honest validator’s randomness con-
tributions (for Ethereum, both covered by the unforgeability of BLS signatures).
As in the previous analyses, though they don’t make it explicit, we assume that
an attacker is unable to prevent an honest block producer’s block from being in-
cluded in the chain. Though unlikely, such attacks are feasible using the attack on
LMD Casper outlined in [38, 41] or by performing denial of service attacks on the
block producers whose identity is public, however we exclude it from our analysis.
Under the above assumptions, in this section, we derive a µ s.t the interactive
protocol ΠEth

Int has a µ-biasable verifier protocol. The key quantity is the tail
length T , the number of slots with adversarial block producers in sequence be-
fore the RANDAO value is used at the end of the epoch or the challenge block
for BEEFY. The last honest block producer before this point produces a block
that must be included, whose contribution to the randomness is random and
unknown in advance. The adversarial contributions the randomness are fixed by
this point, so the adversary has the choice of publishing a block or not. This
gives them 2T choices of randomness. We build upon the TAIL-MAX strategy
described in [13], and modeled as a Markov Decision Process M ′

G in [13].

Adversarial Strategy: The adversary can employ TAIL-MAX continuously
and wait until the current or next epoch has an exceptionally high Tn. After
bdelay blocks for bdelay longer than two epoch lengths, Now an adversary could
wait until the current epoch ncommit (or a close epoch) has many adversarial
validators at the end, before committing. Then bdelay blocks later, the current
epoch nchallenge may still be somewhat biasable, allowing the adversary to have a
more than usual chance to get many adversarial blocks before the trigger block.
We can bound this bias by calculating how much the adversary can bias by
running TAIL-MAX (synonymously TM) until epoch nchallenge − 2 which gives
the optimal biasability.

We denote stcommit as the state at the time of commit and write PrA,stcommit [E]
as the probability that E happens with adversary (or a policy in the MDP) A.
We denote by T

(s)
n , the number of adversarial slots before a slot s occurs in epoch

n. Maximising this is very similar to Tn, except that the sequence of consecutive
adversarially controlled blocks may extend into the previous epoch. The optimal
policy T

(s)
n -MAX for the MDP M ′

G for maximising T
(s)
n runs TAIL-MAX until

epoch n− 2. We denote T
′(s)
n as the length of the sequence which is in epoch n
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so we have

T (s)
n =

{
T

′(s)
n when T

′(s)
n ≤ s− 2

s− 1 + Tn−1 when T
′(s)
n = s− 1

The distribution of T
′(s)
n under T

(s)
n -MAX is similar to a truncated version

of that of Tn under TAIL-MAX. Concretely PrTAIL-MAX,stcommit [Tn] ≥ k] =

Pr
T

(s)
n −MAX,stcommit

[T
′(s)
n ≥ k] for k ≤ s − 1 since both require a particular k

slots to be adversarially controlled. So we have EA[2
T ′(s)
n ] ≤ E

T
(s)
n −MAX

[2T
′(s)
n ] ≤

ETAIL−MAX [2Tn ]. Note that for the policy T
(s)
n -MAX, the Markov chains for odd

and even epochs are independent and so Tnchallenge−1
and T ′(s) are independent.

We now compute a reasonable bound on the number of slots at the end of an
epoch that it is feasible to wait for. From our simulations in [14], we obtained
from the stationary distribution, i.e. under the continuous attack above, tail
lengths of 15, 16, 17 occur in expectation once in every 8,24.1 and 72.3 years
respectively. It seems rather expensive in terms of missed block rewards to carry
out the attack for that long. Without the continuous attack, tail lengths 15,16,17
only occur in expectation every 26.2,78.6,235.8 years respectively. We fix Tinit =
16 as the maximum feasible tail length for the adversary to wait.

The adversary could feasibly know the block producers in epochs ncommit+1
andncommit+2 if the commit slot is close to the end of epoch ncommit. We assume
that both have tail length at most Tinit. If there is a tail length of 16 in future
epoch n, then the distribution of Tn+2d is that of d transitions of the Markov
chain from the state corresponding to tail length 16. Concretely we compute
that e.g. for d = 2, ETAIL-MAX[2

Tn+4 ] is 172.8. Note that this decreases in d.

Putting It All Together ΠEth
Int works using block numbers, leading to a much

bigger number of choices in slot numbers. Appendix E analysis this issue to ar-
rive at 78 slot choices for the adversary. The adversary can take T , the number of
adversarially controlled slots before the RANDAO randomness is sampled for the
challenge, to be the maximum value of T (s)

n over 78 slot numbers. They have 2T

choices of RANDAO samples. Each of these choices is uniformly distributed and
random (though they are not independent). Thus by a union bound for a particu-
lar challenge value c ∈ Schallenge, they have at most EA[2

T ]/|Schallenge| probabil-
ity of getting c as the challenge. So the verifier is µ-biasable for µ = maxA EA[2

T ].
We use union bounds to bound EA[2

T ] over the sequence of adversarial blocks
in each epoch, detailed further in Appendix F. Plugging in the parameters for
ΠEth

Int , we show that ΠEth
Int is at most 103100-biasable.

6 Applying Fiat-Shamir Heuristic

As a natural extension, the Fiat-Shamir heuristic can be applied to transform
the interactive protocol ΠInt into a non-interactive proof of knowledge protocol
ΠFS, enabling the generation of a compact certificate that convinces the verifier
that at least one honest validator has signed the payload. Albeit in a more
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general setting, Compact Certificates for Collective Knowledge introduced in
[37] tackles a similar problem. Their non-interactive protocol is in spirit similar
to our work but caters to a different setting with weighted votes and does not
focus particularly on bridge applications. In the compact certificates approach,
the randomness sampled in challenge phase of ΠInt is replaced by the prover
computing a hash on all publicly know data to the verifier. ΠInt can similarly be
transformed such that the prover uses a cryptographic hash function h over C,
PB , Claims, Rσ (Merkle Root of a tree whose leaves are claimed signatures). The
security parameter (number of signatures in the certificate to be be checked by
verifier) in ΠFS purely depends on the assumed hash power of the adversary to
break h. Assuming that an adversary can query Q = 2q hashes, Theorem-1 from
[37], shows that m + q signatures are required to be checked in the certificate
for ΠFS to achieve a soundness error of 2−m. In contrast, ΠInt only requires m
signature checks for the same soundness error 2−m.

To ensure 256-bit security for ΠFS, m + q can be set to 256. However, can
we have a more realistic bound on the hash power of adversary? Assuming the
adversary is rational, if the expected value of using the hash power to mine
bitcoin is higher than the expected value of attacking ΠFS then the adversary
would rather mine bitcoin. Since mining a block requires getting a 256 bit hash
lower than the CurrentTarget, we can bound the maximum hash power Q of an
adversary (see Equation 4). Plugging in parameters with the values at the time of
writing, we obtain q ≤ 101, where 2q = Q. Refer Appendix D for concrete values.

Q ≤ 2256

CurrentTarget
· CurrentBTCSupply

BlockReward
(4)

7 Related Work

While there has been advances in application specific (e.g. token swaps and pay-
ment channels) bridging solutions [40, 36, 48, 34], we focus on approaches sup-
porting functionality of following finality for PoS networks. Most bridge archi-
tectures [9, 1, 12] involve a centralised and trusted intermediary (via a multi-sig)
that run full-nodes of the bridged chains. Time and again, the trusted centralised
entities have been compromised [15] resulting in massive financial implications.

Comparison with Altair. Ethereum’s Altair upgrade [6] introduced a light-
client protocol based based on sync-committees [30], a significantly smaller subset
of validators (currently 512) responsible for attesting the finality of blocks. The
sync-committee is randomly chosen for each epoch (∼ 27 hours) using RANDAO
beacon, and remains unchanged for a given epoch. Similar to Altair, ΠDyn does
not require any custom crypto or SNARK primitives on the prover or verifier
side, hence can be integrated readily on existing blockchains, and particularly
efficient for large validator sets. We skip the already know issues with Altair
[32, 39] and focus on the advantages of ΠDyn specifically for bridge applications
which demand higher security guarantees and efficiency requirements:

1. For the same soundness error, the signature checks required in ΠDyn are
significantly lower than Altair. The current sync-committee size of 512 guar-
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antees soundness error of 8 ∗ 10−54 and requires 342 signature checks, while
ΠDyn requires only 172. Detailed further in Appendix A.

2. ΠDyn is more resilient to adaptive adversaries. The sync-committee for the
upcoming epoch is already known in advance, hence the adversary can use
the whole epoch duration to adaptively corrupt members. In contrast, the
adversary only has duration between the challenge and response phase (con-
figured per scenario) in ΠDyn to launch adaptive corruption.

3. All bridges would be affected if the sync-committee is compromised, while
bridges using ΠDyn do not have a single point of failure.

4. ΠDyn lets the verifier configure the security parameter enabling it to trade-off
security and efficiency depending on the crypto-economic setting.

Optimistic Techniques With Fishermen. Several bridges like Nomad [2]
and Near’s Rainbow [11] are examples of optimistic protocols (aka Claim and
Challenge schemes) that leverage fraud-proofs [23]. Typically, the light client
optimistically accepts a state without verifying and relies on economically incen-
tivised Fishermen/WatchDogs to detect invalid updates. Unlike our approach,
the relayers and fishermen need to be staked to avoid spamming and forcing all
signatures being verified by making false positive challenges. Further, the secu-
rity of such bridges depend on the censorship resistance of target chain during
the challenge period. Dynamic transaction fees on the target chain worsen the
issue, resulting in high challenge rewards and stakes. Moreover, the challenge
period needs to be long trading off latency and security. In comparison, our so-
lution requires less data since all signatures do not need to be published on chain
and our bridge has lower confirmation latency. If the target chain is censored,
our protocol loses liveness rather than safety but optimistic protocols lose safety.

SNARK based bridges. Recently, embedding SNARK-based on-chain light-
clients has been quite popular approach for trustless bridges [17, 45, 47]. Ac-
countable Light Client system introduce in [28] guarantees that a large number
(e.g.1/3rd) misbehaving validators can be identified when a light client is misled,
a crucial property for PoS Blockchains. These solutions require custom SNARKs
and cryptographic primitives like aggregatable signatures which are difficult to
implement in existing networks. Our approach is simpler and secure implemen-
tation is less involved [26].

8 Conclusion and Future Work

We presented an interactive light-client protocol ΠDyn for PoS blockchains using
on-chain randomness. ΠDyn leverages crypto-economic arguments to drastically
improve efficiency (on-chain computation usage) without compromising security.
We demonstrated the practicality of our protocol by instantiating a trustless and
decentralised bridge between Polkadot and Ethereum. As future work, we plan to
design incentive mechanism’s for the relayer market. We are interested in settings
where the relayers are incentivised by public good funding (DAO treasuries) [35,
44, 7] as well as fees generated by users of the bridge.
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A Efficiency Comparison with Altair

Let X be the random variable denoting the number of malicious validators being
picked in the Sync-Committee. Since the validator set on Ethereum is ≥ 106,
we can approximate the hypergeometric distribution of X to X ∼ Bin(512, p),
where p = 1/3 is the probability of picking a malicious validator from byzantine
assumptions. The probability that a majority of malicious validators comprise
the sync-committee can be bounded using Pretty Chernoff’s inequality [27, 33]
as follows:

Pr(X − E[X] ≥ λ) ≤ e−
2λ2

n

Substituting λ = n/3 and E[X] = n/3, we obtain soundness error bound

Pr(X ≥ 2n/3) ≤ e−2n/9

Plugging the values for Ethereum, we obtain a bound on probability the a
super-majority malicious validators were elected in the sync-committee (sound-
ness error) Pr(X ≥ 342) = 8 × 10−54. To obtain the same soundness error via
ΠDyn, the number of signature checks (security parameter) required is 176 (i.e.,
log2(1/Pr(X ≥ 342))). In fact, the result can be generalised: the ratio of signa-
ture checks required in ΠDyn to Altair for achieving the same soundness errors
is (log2 e)/3.

B Proof of Theorem 1

Proof. Let’s assume no honest validator signed PB . The prover must provide a
bitfield Claims with at least n−f 1s. Consider ik for some 1 ≤ i ≤ k. The public
key pkik belongs to a dishonest validator only if ik is one of at most f possible
values out of n − f 1s at the least. Since n > 3f and R is unpredictable and
uniformly random, with probability at least 1−f/(n−f) > 1−f/2f = 1/2, pkik
belongs to an honest validator. Since the iks are each chosen independently, the
probability that no pkik for any k belongs to an honest validator is at most 2−m.
It remains to show that if some pkik belongs to an honest validator, then the
prover cannot convince the verifier. Because the commitment scheme is binding,
the prover cannot provide an opening of C at position ik to a value other than
pkik . Because the signature scheme is unforgeable and honest validators did not
sign PB„ the prover cannot provide a signature σik that verifies against pkij .
Hence the prover can not convince the verifier in this case. We note that if
m > f , the the protocol is deterministically sound. If the verifier needs to be
absolutely sure, the verifier can verify m > n/3 signatures, since at least one of
those signatures will be of an honest validator.

C Proof of Theorem 3

Proof. We first compute the probability of successful attack by defining the
following events:
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• WA: adversary convinces the verifier an un-finalised block B without justi-
fications, i.e., the adversary successfully attacks ΠDyn.

• WA,v,k: the adversary succeeds and u(e, v) = k in the verifiers state.
• TA,v,k: the adversary attempts using v as the backing validator in commit

phase for the kth attempt, i.e., u(e, v) = k after the attempt.

The success probability for an adversary is computed as follows:

P(WA) =
∑
v∈V

∞∑
k=1

P(WA,v,k) (5)

=
∑
v∈V

∞∑
k=1

P(WA,v,k|TA,v,k) · P(TA,v,k) (6)

≤
∑
v∈V

P(TA,v,1) ·
∞∑
k=1

ϵ

21+2⌈logk⌉ (7)

≤ 3ϵ

4
·
∑
v∈V

P(TA,v,1) (8)

≤ 3ϵ

4
· |{v ∈ V : A uses v as backing validator}| (9)

Hence, for any adversary A, the expected incentive is computed below:

EA = P(WA) · M+ SEA · (−s) (10)

≤ |{v ∈ V : A uses v as backing validator}|(3s
4

− s) (11)

In fact, the expectation decreases linearly w.r.t the number of backing signature
used by the adversary.

D Comparison of Signature Checks Required by Verifier

Table 1 compares the signature checks required by verifier for Polkadot and
Ethereum for the various versions of our protocol and altair.

Network log2(M/s) ΠInt Π
256
FS ΠB

FS Altair
Polkadot 576 10 256 111 201
Ethereum 3761875 21 256 122 512

Table 1. M denotes the market cap and s denotes the minimum stake of validator.
Comparison of signature checks required by the protocols ΠInt, ΠFS with 256-bit secu-
rity, and ΠFS with hash power bounded via rationality assumption relative to Bitcoin
mining.
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E RANDAO Bias Analysis: choices of slots for the
adversary

In the BEEFY protocol as implemented, when the block number which is the
initial block number +bdelayis reached, the relayer needs to send a transaction
that samples the previous RANDAO random number. They have a certain num-
ber of blocks bwindow to include this transaction. The adversary can then choose
from bwindow block numbers.

However, if the protocol works using block numbers, the number of choices of
slot number can be much bigger. Block producers are assigned to slot numbers,
not block numbers, in an epoch. Some slot numbers will have more adversarial
slots before them and so more choices for the randomness. By choosing whether
or not to produce blocks in earlier slots, which do not affect the number of choices
for the randomness, the adversary may be able to ensure that the sampling
block occurs at their choice of slot number. This attack is not useful before the
adversary knows the randomness for the epoch in question.

However, there is not much point them doing this until 2 epochs before,
because then they don’t know which slot to aim for until they know the block
producers. After that, they need at most 64+ bwindow blocks until the RanDAO
randomness can be sampled.

Just how many choices of slots do they have, starting at 64 + bwindow blocks
before? Again we assume that honest blocks always end up in the chain. Though
now the LMD attacks where they don’t are not so useful as they end up with
some adversarial block in the chain instead.

If all block producers produce blocks, then the can be a minium of 64 slots.
The maximum number of slots before 67 blocks is 67 plus the number of ad-
versarial slots before there are 67 honest slots. If the slots assignments were
random, and of course they can be biased as above, this is a sample from a
negative binomial distribution with parameters r = 64 + bwindow. p=2/3.

As calculated at the end of [14] , there for bwindow = 3, there could be
74 adversarial slots before 67 honest ones. except with probability 1/(172.8 ×
3738.7). Thus the slots taken for 64 to 67 blocks could be in the range 64 to
67 + 74, giving 78 choices.

F Union Bound Analysis for RANDAO Bias

The values of T (s)
n are not independent but we will end up taking a union bound.

For slots near the beginning of an epoch T
(s)
n has a contibution from Tn−1. We

denote the length of the intial sequence of adversarial blocks in epoch n as In.
By symmetry the distribution of In under the strategy that maximises it is the
same as Tn under TAIL-MAX. Only if s − 1 ≤ IA do we get a contribution of
Tn − 1 to T

(s)
n . We can bound the maximum over k values of s, say s ∈ S, as

max{T ′(s)
n } ∪ In + Tn−1. From above EA[2

T ′(s)] ≤ ETAIL-MAX[2
Tn ]. Under the

strategy In-MAX that maximises In which is TAIL-MAX until epoch n− 2, the
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variables In and Tn−1 are independent conditioned on the state at any time,
so EA[2

In+Tn−1 ] ≤ EIn−MAX [2In+Tn−1 ] = EIn−MAX [2In ]EIn−MAX [2Tn−1 ] =
ETAIL-MAX[2

Tn ]ETAIL-MAX[2
Tn−1].

Now the 78 slots could include the start of 3 epochs n, n+1, n+2. Applying
union bounds, we have

EA[2
T ] ≤ 78 max

0≤i≤2
ETM,stcommit [2

Tn+i ] + 3 max
0≤i≤2

E2
TM,stcommit

[2Tn+i ]

Concretely if we take bdelay = 160, bwindow = 3, then since bdelay/32 = 5,
the challenge could appear between epochs ncommit + 5 and ncommit + 8 and
then since ETAIL−MAX,stcommit [2

Tn+i ] is decreasing if we take Tinit = 16, we
get EA[2

Tn ] ≤ 78 × 172.8 + 3 × 172.82 ≤ 103100. Hence the verifier is at most
103100-biasable for ΠEth

Int .


